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ABSTRACT

_-: ,The initial phase of our synthetic discriminant function optical pattern

recognition research has been completed. This hyperspace description allows

the use of off-line synthesis of a filter function that provides both intra-

class recognition (of a key object independent of geometrical distortions) and

inter-class discrimination (of a key object from candidate false targets).

*A new theoretical model for multi-sensor data, a description of a general

multi-sensor processor and a statistical analysis of both have also been

completed. Initial experimental correlations were obtained and found to be

in agreement with our model and theoretical analysis. A new parameter, the

correlation measure, was found to be of use in determining the multi-sensor

nature of input imagery and a IGRADJ digital preprocessing operator was found

to be quite adequate for the cases considered.

Our initial optical correlations on the autonomous terminal homing data

base were also completed. In this research, aperture correlation effects were

overcome by a new technique, optical and digital correlations on the same data

base were obtained and compared (with a high pass filter model for the optical

matched filter found to be adequate and appropriate for many applications), and

sensed/synthetic optical image correlations were obtained (with the help of

photoreduced imagery and advanced preprocessing operations).

AIR FO ' - . f)77 T '-, 7 C-7TIFI(C SER' (AYSC)

-12.

Chief, TecA-Iicd Infor-mition Division



-2-

1. INTRODUCTION

During the past year, our research in optical data processing for missile

guidance has addressed various new algorithms, system architectures, component

tests, and analyses of various image data bases. As in the past years, we have

been quite faithful in reporting our AFOSR sponsored research in various journal

and conference publications. Copies of the more relevant of these papers are

thus included as the chapters of this report to provide concise documentation

of our work.

In Section 2, we provide a summary and overview of our research progress

made in the past year. Details on the more salient topics are provided in

Sections 3 - 7. In Section 9, we enumerate our AFOSR sponsored publications

and the presentations given on this research in the past year.
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2. SUMMARY AND OVERVIEW

2.1 AIRBORNE OPTICAL CCRRELATOR (Section 3)

Since the intended application for most of our pattern recognition tech-

niques is missile guidance, attention to the components for use in such a

system is necessary together with a rugged and stable system architecture. In

[l), we first addressed this subject. In [2] and [3], we provided additional

details of this work. In [4] (Section 3), we summarize these results with

attention to: the use of laser diode sources (rather than the larger laser

sources used in the conventional laboratory optical system), holographic optical

elements (rather than the larger and heavier conventional glass lenses), plus

a new architecture (the lensless matched spatial filter) with greatly improved

stability and ruggcdness.

The basic system architecture involves imaging the laser diode source onto

a lensless matched filter with the input placed behind the lens. The lensless

matched filter is a combined matched filter and holographic optical element

(formed with a converging reference beam, rather than the conventional plane

wave reference beam normally used). When part of the input scene contains the

reference object, a focused beam emerges from the matched spatial filter and

self focuses on the output correlation plane. Since the second Fourier transform

lens and the matched spatial filter are recorded on the same plate, the position-

ing tolerances between these two compcnents are inherently satisfied. This greatly

simplifies the stability and ruggedness of the resultant system. The matched

spatial filter is formed invisible light at one wavelength %1 (for which spec-

troscopic grade film of adequate sensitivity is available), whereas correlation

is performed with a laser diode source at a second wavelength X2" The architecture
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of the scaling correlator system used is adjusted to correct for different

recording and reading wavelengths.

Our present work (Section 3) has included an analysis of the spatial and

temporal coherence of the laser diode source and the shift invariance and

aberrations of the holographic optical elements used. Future work in this

area is anticipated and will be reported upon in future annual reports. The

general philosophy used in our lensless matched spatial filter correlator will

be pursued in our future work (i.e. alterations of the standard optical proces-

sor architectures, when non-conventional components, such as holographic elements,

or laser diodes, are employed).

2.2 SPATIAL LIGHT MODULATORS

A vital feature of most optical data processing systems is the real time

and reuseable 2-D spatial light modulator necessary to input data to the optical

processor. During the past year, we have performed a test and evaluation of

five Soviet rrom and Priz light modulators. The results of this phase of our

research were most attractive and will be presented later when available [5-81.

2.3 OPTICAL EXPERIMENTS FOR AUTONOMOUS TERMINAL HOMING (Section 4)

The major image data base presently available is the autonomous terminal

homing DAPPA set. We have completed our initial pattern recognition analysis

on this data base (Section 4) [9]. The optical system architecture used was a

weighted matched spatial filter correlator. The low resolution and modulation

of this data base introduced a new problem (the dominance of aperture correla-

tions over image correlations), which we overcame by the use of different aper-
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tures during synthesis of the matched spatial filter and during correlation

with the on-line sensed image. In this study, we also provided the first

direct comparison of optically and digitally correlated data (with various

digital preprocessing operations used). From these tests, we found that a

highpass filter model was quite appropriate for an optical weighted matched

spatial filter correlator. The experiments were performed on multi-sensor

data and from comparative results obtained with different preprocessing opera-

tors, we found that a simple highpass filtering preprocessing operator was

often adequate. For more true multi-sensor data with a small correlation

measure (see Section 5), the IGRADI operator (obtained by digital preprocessing)

was preferable.

The final feature of this research was our first successful optical cor-

relations on sensed input imagery and synthetic reference data. As our work

showed, such correlations were possible only when aperture effects were removed,

when the input imagery was photoreduced, and when advanced preprocessing operators

(e.g. gray tone modification and small surface lysing) were applied to the data

bases.

Analysis of this data base and more attention to different preprocessing

operators is required and will be the subject of future work by us.

2.4 HULTISENSOR PATTERN RECOGNITION (Section 5)

A major class of imagery on which considerable pattern recognition research

has been performed is multi-sensor data. In [10], we described a new statistical

model for multi-sensor imagery and a general multi-sensor processor. We performed a
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a statistical analysis of our general processor using our image model. In [i]

(Section 5), we describe our recent results in which experimental verification

of our model and processor were obtained. These tests verified the use of

our new parameter (the correlation measure) as a measure of whether the image

pairs were unisensor or multi-sensor imagery. These tests also concentrated

upon the use of and need for various preprocessing operators in the correlation

(for acquisition) of multi-sensor data.

For image pairs with high correlation measures, the data was found to be

uni-sensor and a highpass filter preprocessing operator was adequate. For data

with low (< 0.5) correlation measures, a nonlinear magnitude operator provided

improved results. We also found the IGRADI operator to well approximate

whitening, edge enhancement and polarity equilization. The use of histogram

reshaping as a preprocessing operator was found to provide a 6-32% improvement

for different multi-sensor image sets. As the number of objects in the image

was increased, we found the data to more closely approach multi-sensor imagery.

Our theoretical threshold values were also found t3 be verified by experiment.

During the next year, we will more completely document and analyze these initial

results.

2.5 INTRA-CLASS PATTERN RECOGNITION USING SYNTHETIC DISCRIMINANT FUNCTIONS
(Section 6)

Maintaining pattern recognition in the face of geometrical distortions

between the input and reference data (especially 3-D aspect angle differences)

is perhaps one of the most difficult data processing problems in existence.

To address this problem, we suggested [12] the use of a hyperspace formulation

L
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of the data for the problem in which each input image is represented by a vector

point in a hyperspace. Our initial technique has been refined in (13] (Sec-

tion 6) to include a new maximum common information concept and the use of

other basis function synthesis techniques. This approach allows a synthetic

discriminant function (defined by a linear combination of the image training

set) to be produced off-line and to be subsequently used in the future recog-

nition of the same target independent of its geometrical aspect.

Although our initial results are most promising, much additional work is

necessary on this concept. We intend to extensively pursue this concept during

the coming years.

2.6 INTER-CLASS DISCRIMINATION USING SYNTHETIC DISCRIMINANT FUNCTIONS
(Section 7)

As an initial extension of our synthetic discriminant function research

(Section 6), we considered the case of discrimination in the two-class pattern

recognition problem and suggested several new techniques and provided initial

experimental verification of them [14] (Section 7). These concepts included:

maximum common information filters, multi-channel filters, non-unitary trans-

formations, and decorrelation transformations. Extensive additional research

on this aspect of the synthetic discriminant function concept with attention

to multi-class pattern recognition problems and statistical filters is the sub-

ject of current research that will be reported upon in future annual reports.

2.7 ITERATIVE OPTICAL PROCESSOR

Due to cancellation of other support for our iterative optical processor

[15] research, interim temporary funding of this project by AFOSR has enabled
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us to complete a Ph.D thesis in this area, to generalize on the different ap-

plications possible for this optical system architecture [16], and to document

our work in this area [17-19]. We will detail and highlight this phase of

our research in our next annual report (after publications on the subject are

finalized).

2.8 FUTURE RESEARCH DIRECTION

Our future research is expected to follow the major lines addressed in

the past two years (real-time devices, optical system components and airborne

processors) with major attention given to new pattern recognition architectures

and algorithms (especially hybrid optical/digital systems). As can be seen, the

flavoring of our recent and future research is being directed toward more use

of statistical analysis and digital simulation of optical systems. We will also

continue to apply our new algorithms, architectures and concepts to new missile

guidance image data bases. Several general pattern recognition reviews were

published during the past year under AFOSR support and may be useful for a general

review of this area [20-23].
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A LASER DIODE/LENSLESS MSF OPTICAL PATTERN RECOGNITION SYSTEM

by

D. Casasent, M. Shen*, F. Caimi, T. Luu and B. Feng*
Carnegie-Mellon University

Department of Electrical Engineering

Pittsburgh, Pennsylvania 15213

ABSTRACT

A compact and rugged optical correlator is described that uses a laser diode source and holo-
graphic optical elements. Use of a lensless matched spatial filter, and corrections for wavelength
scaling and aberration errors plus an analysis of the system's shift invariaace are included.

1. INTRODUCTION

Optical Pattern recognition (OPR) by matched spatial filter (NSF) correlation Is well-known 11).

The advent of holographic optical elements (HOEs) [2-3], laser diode sources and new architectures has
made rugged and compact OPR systems most attractive [4-7] for commercial and airborne applications.
In this paper we describe the first system [7) to employ both solid-state sources and HOEs. A lens-
less MSF in which the MSF and second Fourier transform (FT) lens are combined on one plate 18-91 was
used to avoid critical alignment of these two components. The design, experimental verification and
shift invariance of this system are discussed in Sect, 2. When a laser diode source is used, the MSF
is recorded at one wavelength and correlation is performed at a second wavelength. A new scaling cor-
relator topology using an imaging lens was employed to correct for wavelength changes. The design,
fabrication, aberration analysis and experimental demonstration of the system are presented in Sect. 3.

2. LENSLESS 1SF

2.1 THEORY

The system used to record a lensless MSF in shown in Fig. 1. It it similar to the conventional
technique [1) except that a converging reference beam is used rather than a plane wave. For simplic-
ity of notation, only a 1-D analysis is included with no loss of generality. During 1SF synthesis,

h(x) is placed at P1 and its FT incident on P2 is us(x2) - H(x2/XfL). The spatial coordinates of Pl,
P2, and P3 are denoted by xl, x2, and x3 respectively; X is the wavelength of the incident light and
fL is the focal length of lens Ll. The converging reference beam at P2 is described by

ur(x2) = expf-jk(x0 -x2 )
2 /2z), (i)

where k - 2w/X, xO is the distance from the axis in P3 at which the converging beam focuses, and z is
the orthogonal distance from P2 to P3. The pattern recorded at P2 is lus+url . We assume that the
transmittance of P2 after development is equal to the incident exposure and thus the term of .nterest
in this MSF at P2 is

ut(x2) - H*(x2/XfL)expf-jk(xo-x2)2/2z), (2)

where the constant phase factor describing its propagation direction Is omitted for simplicity.

If P2 is re-illuminated with us, a point of light appears at x3  x '. Our major concern is that
this occurs without the need for a second FT lens between P2 and P3. Thus no critical alignment of

these components is needed in this lensless NSF system. If h is shifted in P1 during reconstruction,
the locationof the point of light in P3 should shift from its original xO location by an amount pro-
portional to the shift of h in Pl. This shift invarianLe is required in pattern recognition.

To see the use of such a system for pattern recognition, we place f(xl) - h(xl+,) + g(x1 ) at Pl.
This function contains the reference h(x1 ) displaced from the origin by an amount r and g(xl) denotes

*Visiting Scholars from Chengdu Institute of Optics and Electronics. People's Repub]ic of China.
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the rest of the input. We assume g h = 0 and describe the light distribution incident on P2 for the
term of interest by

u2 (x2) H(x2 /fL)exp(jkx2c/fL). (3)

Leaving P2, we have (suppressing constant phase terms for simplicity)

u H(x2 /XfL)H*(x2/XfL)exp(-Jkx2 /2z)exp[jkx2 (c/fL+xO/Z)]. (4)U(2)U t ( 2) 2 L 2 L2 :X

At P3 we find the FT of (4) or (omitting a quadratic phase factor, that is negligible when intensity
is detected at P3)

u 3 (x3 ) h(x3fL/z)Qh( 3fL/z)*6(x 3+xo+z/fL). (5)

Inspection of (5) shows that this P3 pattern is the correlation of h displaced from the reference
point xo by an amount zC/fL proportional to the displacement E of h from the center of PI.

Many authors have proposed (and some have used) convergent reference beams for diverse purposes
(8, 9, 11-13). In our work, we are concerned with the aberration effects of the HOE on the system's
shift invariance as well as the use of the system for pattern recognition [14).

2.2 EXPERIMENTS

The system of Fig. 1 was assembled using: A = 633 nm, fL - 500 mm, 0 - 11.3* and x0 = 78 mm.
The input function f used is shown in Fig. 2a. It contains, four occurrences of the key word "PRO-
FESSOR", which we select as our reference function h (Fig. 2b). A lensless MSF of this function h
was produced at P2. f was placed at Pl and the output correlation plane pattern in the vicinity of

(x3 , y3) = (xo,O) in P3 appeared as shown in Fig. 2c on an isometric display (14]. The locations of
the four correlation peaks are seen to correspond to the four positions of the reference word in the
full input image.

2.3 ANALYSIS

A feature of this and any MSF system for OPR is proper selection of the beam balance ratio
K - lur/us; 2 used during MSF synthesis [10]. Since us varies spatially, so does K. Since the modu-

lation of the MSF is a maximum when K = 1, we can select the spatial frequency band in which to set
K - 1 and hence enhance certain spatial frequencies in the input data during MSF synthesis. We refer
to this as weighted MSF synthesis (10]. For the input text data of Fig. 2a, the FT of the word "PRO-
FESSOR" was found to exhibit peaks at spatial frequencies corresponding to the reciprocal of the:
stroke width, spacing between letters, the width of a letter and half the height of a letter. The FT
information in the word is present as modulation about these spatial frequencies 115]. The latter two
spatial frequencies (letter width ind half-letter height) coincide at 3.7 cy/mm, where a bright FT
plane spot is observed. We adjusted K to be one at this spatial frequency during synthesis of the NSF
and thus maximized the correlator's performance. Such an MSF acts as a bandpass filter centered at
3.7 cy/mm. Because of this, the HOE need only operate over a band of spatial frequencies and thus its
performance is less demanding than that of the normal FT or HOE lens.

We now consider the effect of weighted MSF synthesis on HOE aberrations and the system's shift
invariance. Particular attention is given to astigmatic aberrations (9, 16]. Including third order
aberrations, denoting the field angle of the key object by tan 6 - E/fL and assuming tan 4 - 2x0 /R0 ,
where R0 is the distance from the center of P2 to x3 = xo, we find the optical path difference for the
system to be 6ra - x2

2x0 (tan )/R0
2 and (tan )max = D/2fL, where D Is the input aperture. If the

maximum input spatial frequency is fm, the maximum optical path difference error is

- fm 2X2 Df sine/2RO ,  (6)ra max m L 0

where sin6 - xO/RO . In the design of our experimental system, we restricted fm and D, minimized .
and fL. and increased R0 to reduce (6). From (161, the astigmatic phase aberration Ja expression was
found. A quadratic phase error model was assumed. From [17] the loss P in the correlation peak

47



intensity lp was found to be related to the standard deviation 60 of Oa over the full aperture by

p - 1-6 2 (7)

Inserting system values into (7), a plot of p for input displacements Ax, from +10 m to -10 ms
was made. From this theoretical curve, a maximum 1p variation of only 202 was predicted for +10 -
displacements of h(x) across the full input aperture. The nearly uniform values for the four correla-
tion peaks in Fig. 2c verifies the excellent shift-invariance of this system design. Detailed exper-
imental measurements of I were made for +10 m input displacements and a maximum lp loss of only 10%
(or half the theoreticall predicted value) was found. The superiority of the experimental data to
the theoretical predictions is attributed to the bandpass effects of the weighted MSF. Recall that

the above theory assumed that the HOE aberrations existed over the entire spatial frequency aperture
of the HOE. Thus weighted NSF synthesis (10] reduces HOE aberration effects and makes the design of
a shift-invariant lensless NSF correlator with low 10% variations in Ip realistic 114].

3. LASER DIODE CORRELATOR

When a laser diode at X2 is used as the light source during correlation, its typical X2 value is
not in the wavelength range of NSF media. Thus the lensless HOE/NSF at P2 must be Pynthesized off-
line at A and correlation performed at the different A2 of the laser diode. This V - X2/Xi wave-
length change is equivalent to a scale error in the imagery. In this section, we discuss this aspect
of laser diode correlators and other laser diode parameters and their effects on the system's design
and performance.

3.1 WAVELENGTH-SCALING CORRELATOR

The laser diode correlator used is shown schematically in Fig. 3. During MSF synthesis, L1 is
illuminated with a plane wave at Al and the converging reference beam is used. With Pl placed behind
LI, the FT of the P1 data is scaled [18] by fL/d. By varying d, the scale change V can be compensated.
To satisfy the focusing conditions, the scale change must be kept below 20% (10]. We denote the dis-
tances d and e and the angle 8 in Fig. 3 during MSF synthesis and correlation by subscripts I and 2.
To compensate for the scale change v and to satisfy focusing conditions, we must satisfy d2 - d/,
e2 = el/p and sine1 - pstn62 . The displacement Ax3 of the output correlation is related to the dis-
placement Ax1 of the input by Ax3/Ax1 = e2/d - eL/d . By choosing Ax < d2 and Ax3 - e., field
angles and hence distortion effects will ?e imall-an HOE aberration eifects will be minimized.

Such a wavelength-scaled correlator was assembled and tested [191 using gas lasers (Al - 488 nm
Argon laser, A2 = 633 nm He-Ne laser). Less than 102 variation in I were observed for +10 m input
displacements. A system with HOE elements for both L1 and L2 was also assembled and correlations were
successfully performed with gas laser sources 1191. Although.the output light level was low due to
the low diffraction efficiency of the HOE elements, acceptable output correlations were obtained.
Better results are possible if bleached or dichromated gelatin elements [2, 31 wi'h higher (802 vs 32)
diffraction efficiency were used.

3.2 ABERRATION ANALYSIS

For the laser diode correlator, we use Al - 633 nm and A2 - 794.5 nm (Mitsubishi ML-4001 laser
diode). The astigmatic aberration equation of [16], in our notation, becomes

Wa - (x.2 /2X2 )[( 3j) xO
2 /e 3 + 213 ox 0 /e6 1 ( 3 Ax12/d12 )(1/eI - l/d1 ). (8)

The system parameters chosen for our correlator of Fig. 3 were: el - dl - 400 mm, fLl - 760 mm,

fs - 10 cy/mm, x, - 2.5 -, Ax1 - 12.5 =m and x 100 mm. For these values, we find W 0.44 A2and W 0.13 A2 . These low phase errors should result in a high performance correftor. Recall
that werated NSF synthesis will reduce these W. effects even more.
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3.3 LASER DIODE EFFECTS

The temporal coherence of a laser diode yaries with power and temperature and can result in a
source width X2 and/or a wavelength shift 62. For the laser diode used, A2 - 0.2 nm and A2 . 2n..I

For our case N X )2 /AX2 = 400. We expect the system to operate well for higher N because most
of the contribution to the correlation is due to spatial frequency data below the maximum and the
above result thus gives a quite worst-case limit on N. The spectral spread gA2 of the source wil,
produce a divergence Ae2 in the wavefront leaving P2 during correlation. This can affect the shape
and Ip value of the correlation. To reduce this effect, we require [5, 7]

S2< A2 22/(2oxm sin 01). (9)

For our system, sin 61 - 0.25, v - 1.26 and thus satisfying (9) requires AX2 < 0.4 nm. Since the A2
of our laser diode source is half of this value, we expect no problems from this error source (with
our selected system design). Only AX2 not bA2 affects the shape of the correlation whereas the larger
of AA2 and affects N, the space bandwidth of the input in 1-D.

The spatial coherence of the laser diode source used was also considered. This parameter was
obtained from fringe visibility measurements. Over a 25 im input aperture, V was a minimum of 0.75.
From [20], we define V as the ratio of coherent intensity Ic to total intensity It. Assuming uniform
illumination at P1 and since the correlator's output is due to the coherent light contribution, we
expect the correlation peak intensity I_ to be proportional to the square of Ic . We thus expect cor-
relation I p and SNR to be decreased by a factor V2 due to the limited (V 0 1) spatial coherence of the

laser diode used. For our system, the source's spatial coherence will cause only a 2.5 dB loss in SNR
as the input object shifts from the center to the edge of the P1 aperture. This is again a worst-case
result, for reasons similar to those noted earlier.

Proper collimation of the laser diode source should also be insured. For 2u - 10" aperture angle
of the laser diode (see Fig. 7) and its wavelength, the source can be considered to be a point. We
can thus use a simple imaging optical lens for L1 with quite modest requirements (a cemented doublet
suffices). A trade off exists between uniformity of the Illumination at Pl (by increasing the dis-
tance from the laser diode to Ll) and less light power in the P1 aperture (shorter distance fromthe
source to Pl). For the system design used, L1 intercepted a 7' cone angle. For this case, one-sixth
of the source light is useable and the P1 illumination has a 302 intensity taper (thus a 3 dB varia-
tion in I and SNR for input displacements over the full P1 aperture is expected, again in worst-
case). &ese various source coherence, lens aberration, and uniform illumination effects can add
in worst-case to produce Ip and SNR variations of 6 dB maximum.

3.4 EXPERIMENTS

All the above analysis issues-were incorporated into the design of an experimental system in the
topology of Fig. 3. In Fig. 4 we show the input, reference and output correlation plane pattern ob-
tained with the MSF formed at A1 - 633 nm and correlation performed with r laser diode at X2 - 795.4nm.
The input transparency used was a radar image with a 24 m x 30 m format. The SNR of the correlation
is seen to be quite good even though the reference was located at the edge of the input scene.

4. SUMM4ARY AND CONCLUSIONS

A low size and weight optical correlator suitable for airborne applications has been described,
designed, analyzed, fabricated, tested and successfully demonstrated. The system employs holographic
optical elements in a lensless MSF architecture with improved system alignment and stability features.
The light source used during correlation was a laser diode. It was thus necessary to record the
matched spatial filter at one wavelength and perform the correlation at the different wavelength of
the laser diode. A scaling correlator architecture was used to accomodate the wavelength change and
a system design requiring only a simple imaging input lens to focus the laser diode onto the filter
was employed. A complete system design and analysis including aberration effects and with attention
to the system's shift-invariance was performed. The experimental results obtained verified the use-
fulness of this system.
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FIGURES

Figure 1 Schematic diagram of a lensless MSF optical correlaror system 1141.
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Figure 2 Optical pattern recognition performed on the system 
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Figure 3 Schematic diagram of a laser dinde/lensless MSF correlator 17).
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Figure 4. Experimental image pattern recognition data obtained using the system in Fig. 3, (a) in-

put, (b) reference. (c) output correlation 17].
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ABSTRACT

Three aspects of image quality and their effects in an optical matched spatial filter
correlator are described. These concern operation on: digitized imagery, data with low mod-
ulation and low space bandwidth product, and synthetic reference imagery. To address these
practical problems, we employ: spatial filtering, edge enhancement, use of different aper-
tures, photoreduced imagery, and digital preprocessed data. The first experimental data on
optical matched spatial filter correlations with synthetic reference imagery and the first
comparative data on digitally and optically processed multisensor image correlations are
included. From these experiments, we find an optical weighted matched spatial filter corre-
lator to be adequate for most multisensor data and that advanced digital preprocessing opera-
tors are necessary when presently available synthetic reference imagery is used.

1. INTRODUCTION

The scaling correlator version of the optical frequency plane corzelator [l] (Figure 1)
using weighted matched spatial filter (MSF) synthesis [2] is perhaps the most widely used
optical pattern recognition system [3]. In this paper, we address how the quality of the
imagery used in such an optical system affects the processors performance. The data bases
we used include multisensor imagery and imagery with synthetic reference functions. These
data are part of the DARPA autonomous terminal homing (ATH) data base. In Section 2, we
describe the optical processor and address the issues of optical processing of digitized
data. A simple low pass spatial filtering aperture in the Fourier transform or matched spa-
tial filter plane is shown to be necessary and adequate to remove the effects of correlations
due to the fixed regular input pixel pattern present in such data. In Section 3, the dif-
ference between system, detector and correlation noise are specifically denoted and the im-
portance of the system's light level budget, the system's diffraction efficiency n and the
detector's sensitivity are addressed. Solutions include higher power light sources and more
sensitive detectors. However preferable solutions are increased data modulation and data
space bandwidth product and the use of bleached or dichromated gelatin matched filters [4].

WET
FIGURE 1. Schematic diagram of the exper-
mental optical scaling frequency plane
correlator used. Code: L(laser,X-514nm);

2 S(shutter); VBS(variable beam splitter);
M(mirror); SF(pinhole spatial filter, 1OX
objective, 7um); CL(collimating lens. fL.-
762mm); FTL(Fourier transform lens, fL=
762mm); Pl(input plane); P2 (MSF frequency
plane); P3 (correlation plane).

Pw 2.1 Toly of tme Scaling Co w.ato

Optical correlation experiments on the ATR data base clearly show that this data has quite
low modulation, spatial frequency content and space bandwidth product. Fourier transform
plane scans and our initial quantitative analysis in Section 4 show the magnitude of this
problem. It manifests itself as a quite appreciable output correlation peak due to the input
aperture with a smaller peak due to the correlation of the imagery itself. In Section 5, we
advance the theory and experimental verification of a new laboratory technique that can over-
come such problems. To suppress the effects of the aperture correlation, we use different
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apertures for the input and reference functions. This technique, together with the high pass
filtering action of the MSF are shown to decrease the magnitude of the aperture correlations
and to allow detection of the true image correlation output.

In Section 6, we consider optical correlation of multisensor ATH data. Both digital [5]
and optical correlation data on the same image set are presented and compared with attention
to the different preprocessing operations possible in an optical and digital system and with
attention to the different preprocessing operations required for multisensor pattern recog-
nition. We find that in most practical multisensor pattern recognition cases, the optical
and digital systems perform comparably and thus conclude that in the majority of practical
cases, optical processors using weighted matched spatial filter synthesis are adequate for
multisensor pattern recognition.

In Section 7, we turn our attention to the ATH data base containing synthetic reference
objects. These are found to differ considerably from the on-line sensed inputs that occur.
In this case, more advanced preprocessing techniques are necessary to allow high quality out-
put correlations to be obtained. Our experiments with several different digitally prepro-
cessed data are summarized. We find the gray tone modification operator to perform the best,
but note that the small surface lysing preprocessing operator requires more analysis and that
more attention to modifications of both operators are needed when the number of independent
objects in the target scene to be recognized increases.

2. OPTICAL PROCESSING OF DIGITIZED DATA

Much of the presently available image data bases are digitized. The ATH data base repre-
sents one of the most complete image pattern recognition data bases available. It contains
sensed (real) and synthetic imagery with various differences present in the imagery within
a given set. All of the sensed images have 100 rows and 150 columns, whereas the synthetic
images are 150 x 150. For optical processing, these data are recorded on film (usually in a
35mm format). The resultant image data thus has fixed horizontal and vertical pixel patterns
(with the vertical pattern due to the fixed scan line separation and the horizontal pattern
due to the fixed pixel width). Care must be taken to remove the fixed image pixel pattern
from the data, else it will produce a considerable contribution to the output correlation.
In 161, we first noted this problem and found that it was easily overcome by placing an aper-
ture in front of the MSF or frequency plane to block the spatial frequency components corre-
sponding to the fixed horizontal and pixel spacings. Since the spatial frequency correspond-
ing to the pixel spacing represents the highest input spatial frequency data, they can easily
be filtered out without degrading the image information (which by definition must lie at a
lower spatial frequency).

The optical system used in our experiments (Figure 1) employed weighted MSF synthesis (2].
This concept uses the fact that the spatial frequency portion of the data to be emphasized
can be controlled by picking the spatial frequency u' at which the beam balance ratio K be-
tween the intensities of the plane wave reference beam and the signal beam equals unity. As
K is adjusted to equal unity at different spatial frequencies, low, medium or high spatial
frequency data in the input and reference imagery can be emphasized. We use this technique
in Section 5 to perform the correlation on edge-enhanced data (to dcease the effect of aper-
ture correlations). In Section 6, the same technique is used to approximate a highpass filter
preprocessing operator for multisensor image pattern recognition. In Section 7, the same
technique is again used for similar reasons on synthetic reference imagery.

Our ATH experiments reported here used two different'data sets. The first (Section 6)
contained imagery of the Ames building obtained with 3-4 different sensors at three different
locations either downlooking (0) or target looking (from a depression angle of 20' with
respect to the normal). The second data set (Section 7) contained synthetic and sensed
images of a Lockheed building. In our initial autocorrelation experiments, K was set equal
to one at spatial frequencies from 0.9-15cy/m. For cross-correlations, spatial frequencies
in a lower 0.86-6.6cy/mm spatial frequency range were used. In our multisensor experiments,
the 8-12im sensed images were used as references since they correspond to a good spatial fre-
quency band in which significant target information and passive detectors exist. This band is
also compatible with present plans for the ATH system that include use of an 8-12WM passive
sensor and a 10.6pm active CO 2 laser radar (for range information). The multisensor Ames
image data had quite low modulation with negligible information content beyond 3cy/mm. The
synthetic reference images (Sections 3 and 7) were of even lower modulation and space band-
width product, necessitating the use of even lower spatial frequency settings below 0.4cy/m .
To allow this and to produce optical correlation plane data whose results are more in agree-
ment with those predicted by theory, we photoreduced the sensed and synthetic image data
bases and used more advanced digital preprocessing algorithms (Section 7). Our results on
these data were in agreement with theory.
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3. NOISE SOURCES IN OPTICAL CORRELATORS

The dynamic range of a digital system is well-known to be large. But moreso, these sys-
tems can handle low modulation data by proper normalization techniques. Many practical prob-
lems that arise in optical systems can thus be ignored in digital processing such as: light
source intensity levels, filter diffraction efficiency, and detector sensitivity. As our
performance measure for pattern recognition, we use the output correlation SNR defined as
the ratio of the intensity of the correlation peak to the spatial average of the output cor-
relation pattern far (T>>O) from the correlation peak (assumed to occur at T-0). In Figure
2, we show various noise sources that are present in an optical correlator. All outputs are
measured with a scanning photometric microscope with a fiber optic probe and high gain low
noise PMT interfaced to a chart recorder on which the correlation plane cross-sectional scans
were obtained.

For the system under test, the detector noise level was measured with no input light inci-
dent on the detector. It thus corresponds to the detector dark current and defines the lowest
output intensity that the experimental system can detect. The source of this noise is the
PMT used to detect and amplify the detected light signals. The scatter level of the system
corresponds to the minimum output light level that the optical system can support. This
noise level is due to scatter from the many lenses, mirrors and film interfaces present in
the system. This measurement was obtained with the MSF in place (to block dc and low spatial
frequency data) and with a film of uniform transmittance ec ual to the average transmittance
of.the input image in place at the input plane P1 . This scatter level should be above the
detector noise level. This requires a light source of adequate intensity and a detector of
adequate sensitivity.

S POWR SPCTRMM
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FIGURE 2. Laboratory data showing three types FIGURE 3. Cross-sectional scan of
of correlation plane noise, the Fourier transform of a synthetic

reference image showing its low modu-
lation and low frequency content.

The correlation pattern contains peak sidelobes and other structural patterns far from
the peak. These latter data are part of the actual true correlation and we refer to them as
correlation noise. To insure proper measure of the correlation plane SNR, we must insure
that the correlation noise level is above the lower of the system's scatter level and the
detector noise. If the source's light level, the input data modulation, the diffraction
efficiency of the MSF or the detector's sensitivity is too low, the correlation noise will
be too low and the measured correlation plane SNR will not be a valid measure of the true
SNR of the output data.

For the data in Figure 2, the light levels, n, etc. for the optical system measured are
adequate (i.e., the correlation noise level is above the scatter level and the detector



noise). Lower detector noise levels of 80dB have been obtained with other detectors that we
have (i.e., cooled PMT systems, operated in a photon counting mode) Optical systems with
better components have been assembled by us and have produced better than 55dB scatter
levels. Thus, the data in Figure 2 should be viewed only qualitatively, with attention to
demonstrating the three noise sources rather than with attention to the specific noise
values listed.

4. DATA MODULATION, BIAS AND SPATIAL FREQUENCY EFFECTS

From our remarks advanced in Section 3 with attention to the three noise terms in Figure
2, the importance of high modulation data should be apparent. In Section 2, we noted that
the synthetic reference imagery was of low modulation and spatial frequency. We now quanti-
fy these issues. To do this, the Fourier transform of a reference image was optically formed
and scanned with a photometric microscope. The Fourier transform of the Rect function aper-
ture was also obtained optically and scanned with the same detector system. Subtracting
these two patterns, we obtain an approximate version of the intensity modulation versus
spatial frequency in the Fourier transform of the synthetic reference image alone (Figure 3).
This plot shows the key quantitative features of the synthetic reference imagery. We first
note that the image has no useful spatial frequency data beyond 0.8cy/mm, that beyond
0.3cy/mm the modulation is below 1% and at no spatial frequency is the modulation above 10%.
We thus see from this representative data that quite severe light losses will result when
correlations are attempted on such synthetic reference imagery. we return to this issue in
Section 7.

Another issue associated with this synthetic reference data is how to set K - 1 at spa-
tial frequencies below 0.3cy/mm, where more data modulation exists. Since the diameter of
the first ring of the wedge ring detector used to set the K beam balance ratio [2' corres-
ponds to a spatial frequency of 0.38cy/mm, setting K - 1 in this band is difficult. This
issue was further complicated because scatter from the dc and low spatial frequency data pre-
cludes accurate setting of K - 1 at such low spatial frequencies so close to dc. To facili-
tate accurate test data on this imagery, we photoreduced it by 4.4X to increase its spatial
frequency content and we rerecorded the data on high contrast filn. The results of tests on
these enhanced imagery are presented in Section 7.

To provide initial quantification of the effects of the bias level b and the modulation
level m of the input imagery f(x) plus the effect of the input aperture (assumed for now to
be a square of width A), we describe the full input as

t(x) - [b + mf(x)lRect(x/A). (1)

One-dimensional functions are used for simplicity with no loss of generality. We can assume
that the bandpass filtering action of the MSF removes the bias level and thus set b = 0 in
(1). A similar zero-mean filtering action can easily be provided in the digital processing
of the data. The output correlation then becomes

c(T) - m2 f(x)Rect(x/A) G f(x)Rect(x/A)

m2 A/2-T
- /2 T f(x) f(x + T) dx, (2)

-A/2

for T > 0. From (2), we see that a low image modulation m will greatly reduce the amplitude
of the correlation output (as is well-known). We also note that the input aperture A will
affect the variance of our estimate of the correlation output at shifts T>>0. This occurs
because less overlapping image area will be used in (2) for T-0. We properly normalized
the output correlation by using

m 
2  A/2-T

C(T) f f f f(x)f(x + Tx (3)7T-A/2

for T Z 0. This corrects the optical correlation for the triangular output weighting that
would normally result if the images being correlated were not periodically repeated (as

occurs in a digital circular correlation). However, the variance of the correlation noise
estimate will still be worse as the T shift is increased as noted in conjunction with (2).

If the bias level b were not completely removed, the correlation obtained would be

c(T) - Ab2A(x/A) + (Am 2/2)(f G f)A(x/A), (4)

where the triangular function A(x) - 1 - x for 1xl ! 1 and is 0 elsewhere. From (4), we see
that the contribution to the correlation due to the aperture (first-term) is of amplitude

qQ~
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Ab 2 , whereas the contribution due to the imaoe itself Is Am 2 /2. Assuming b = 0.5 and m = 10.,
the contribution to the correlation due to the aperture is b2 ,'m2 = 2(0.5)2/(0.112 = 50 times
more intense than the imaae correlation. Suporession of the dc level of the image is thus
quite important in MSF pattern recognition.

Our optical correlation experiments nave shown that the bias level b is not completel:
removed by the high pass filtering action of the MSF. Thus, the actual optical correlation
output is neither (2) nor (4). Rather, it is similar to (4), but with a lower bias level b
than the one present in the original imagery of (1). Moreso, the t(x) input is high pass
filtered or differentiated and thus the factor of 50 difference in the aperture and image
correlations noted above will be greatly reduced in practice. However, the aperture corre-
lation effect cannot be neglected if m is low as we show in Section 5. An exact analysis of
this issue is quite image dependent and appears to be due to the fact that a local digital
edge-enhancement operator removes the mean (or bias b) of each part of the image. Conversely,
the optical high pass filtering operator (being a global rather than a local operator) re-
moves the average bias level for the entire image and thus does not completely remove the
bias level for each part or object in the image.

In conclusion, we note that the width of the aperture correlation term will not be 2A as
is implied by (4), but rather will be much narrower with the width approximately given by
twice the reciprocal of the bandwidth of the data. This is important, since the image corre-
lation is thus not masked within the wide aperture correlation function. Rather, it is quite
well separated (see Figure 4a and Section 5).

5. APERTURE CORRELATION EFFECTS

From Section 4, we have shown the contribution due to the optical output correlation can
be significant when the image modulation is low (as it is in Figure 3). We also note that
the global versus the local high pass filtering operation of the weighted optical MSF does
not remove the bias level of each object in the image and thus leaves a potentially large
contribution due to the aperture correlation. We now consider techniques to reduce these
effects.

(4a) (4b)

APERTURE AMD WAOtLY
IMAGE CORRELATION CO; MELAIN

FIGURE 4. Output correlation plane pattern showinc (a) both the apeiture
and image correlations and (b) only the image correlation (obtained after
high pass filtering and use of different apertures for the inout and ref-
erence imagery).

We describe the reference image to be used as

r(x) = [b + nf(x)]Circ(x) (Sa)

and the input image as

t(x) - [b + mf(x + x0 )J Rect(x), (5b

where the input is assumed to be shifted by x0 from the reference location and where differ-
ent aperture functions are used for the input and reference imaces. It is possible to place
both the input and reference functions in rectangvlar apertures of different widths Al and
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A2 or to use different aperture functions directly. In our present description, we assume
circular and rectangular apertures for the reference and input imagery, since this was the
actual procedure used in the laboratory. As noted earlier, high pass filtered versions r'(x)
and t'(x) will be correlated in the actual optical MSF system. The correlation r' 0t' will
thus contain four terms. Two are the average of f over the aperture regions. With zero-
mean imagery, these terms are negligible. The remaining terms are the aperture correlation
(located at a fixed position T = 0) and the correlation of the high-pass-filtered image V
O ocated at T = To a x0 ).

To describe the high-pass-filtered data, we approximate [7] the optical high pass filter (HPF)
function as a derivative filter with a bandwidth BW equal to that of the signal f(x). The
edges in the differentiated data will thus have a small but finite width (l/BW). For the
case of the Rect aperture, we write the derivative function as

[Rect(x/A)I' - Rect[(x - A/2)BWJ + Rect[(x + A/2)BW], (6)

or as two pulses of width l/BW located at + A/2. The correlation of r' and t' now contains
25 terms. However many can be eliminated and the resultant expression simplified as we
now discuss. We write the terms containing fix) times the derivative of the aperture func-
tion as

f(x)d(Aperture)/dx = kd(Aperture)/dx. (7)

This is realistic, since the derivative of the aperture function is a circular or rectangular
edge (in 2-D) of width l/BW as in (6) and the image function f(x) only effects the amplitude
of this edge at the locations where the two overlap. We represent this factor by the cons-
tant k term in (7). The correlation output terms can thus be grouped as

C(T) - Eb2 + 2bkm + k2m2][Rect'(x)D Circ'(x)]

+ [bm + km2 ][Rect(x)f'(x) DCirc' (x))

+ (bm + km2 ]Rect'(x) O Circ(x)f'(x)]

+ m 2 [Rect(x)f'(x)® Circ(x)f'(x)) (8)

The second and third terms in (8) are negligible because f'(x) is of zero-mean. The first
term will also be negligible since the correlation of the derivatives of two different aper-
tures will have very little in common (i.e., for the case of the circular and square aper-
ture of equal diameter and width, their derivatives only cverlap at the four areas in the
center of each edge of the square aperture). The resultant correlation thus reduces to the
fourth term in (8). Assuming approximately equal areas for the two apertures, we thus write
the correlation output pattern as (with m = 1)

C(T) = f (x) f' (x) ]. (9)

In Figure 4a, we show the correlation output pattern in (4) with the same Rect aperture
function used for the input and reference imagery. The natural HPF action of the optical
IMSF is included. This reduces the aperture correlation term in (4), but, as seen, the aper-
ture correlation peak on the left is still quite appreciable compared to the image correla-
tion peak on the right. (The input image was displaced by x0 to show these two correlation
peaks separately). In Figure 4b, we show the correlation output pattern in (8) using dif-
ferent apertures for the input and reference imagery. The output is the single correct image
correlation peak as predicted by (9).

6. COMPARISON OF OPTICAL AND DIGITAL MULTISENSOR IMAGE CORRELATIONS

As our first experimental optical correlations, we considered the processing of various
pairs of multisensor images of the same scene (Ames) taken in different wavelengths (see
columns 1 and 2 of Table 1). In multisensor image pattern recognition, the edges of the
objects in the scene are well-known to be most useful, reliable and reproducable image parts
on which to base a pattern recognition correlation. Thus, various edge-enhancement prepro-
cessing techniques have been used in multisensor image detection and registration. In [51,
we have explored multisensor image detection in depth. Our present concern is to assess the
use of different edge-enhancement preprocessing operators for multisensor pattern recognition
and to compare the results of optical and digital correlations on multisensor image pairs.



Table 1. Optical and digital multisensor correlations (Ames data base)

DIGITAL OPTICAL DIGITAL
REF INPUT SENSOR (um) CM (no Preproc) (HPF) GRAD | HPF

22@22 8-12 1 21.2 15 50.3 X

22G23 8-12,Vis 0.371 3.3 4 11.6 8.7

223 25 8-12,0.8-0.95 0.269 4.5 6 12.5 6.3

10 ii 1.06,0.8-0.95 0.81 16.9 15 7.0 X

In column four of Table 1, we show the results of a direct digital correlation on selected
multisensor image pairs (with no preprocessing). These should be compared to the results in
column five using optical weighted MSF correlations (with the K - I spatial frequency setting
with the best correlation output used). As our performance measure, we use SNR (defined as
the ratio of the correlation peak to the variance of the correlation far from the peak). We
note that the optical correlation results are comparable to those of the digital correlator
with better results obtained optically for most correlation pairs and slightly poorer results
obtained for only two multisensor correlations. This is due to the fact that the optical
correlator always produces a high pass or band pass filtering action, whereas the full image
spectrum is used in the digital correlations. The two cases when better SNR resulted from
digitally processed data correspond to the case of an autocorrelation and to an image pair
for which the correlation measure

CM -~ 
1 r(x)Is (x) dx (10)

r . W x)ddxfI5 x)jdxo

was large (0.81). This correlation measure in (10) is the correlation at registration nor-
malized by the energy in the two images. As shown in [5], large values of CM indicate that
the image pairs have significant common information and thus that they are unisensor moreso
than multisensor data. In such cases, HPF preprocessing will degrade the output correlation
as noted in (5]. Thus, both cases in Table I for which optical HPF processing proved infer-
ior correspond to unisensor not multisensor data.

To provide further insight into multisensor pattern recognition and our comparison of
optical and digital correlations, a IGRADI preprocessing operator

IGRAD - V(Iij 1 - I ij) 2 + (I - I i) (11)

was applied to both images. The subscripts i,j in (11) refer to image pixel numbers. The
correlation results are shown in column 6. A digital HPF preprocessing operation with vari-
ous cutoff frequencies was also applied to two of the multisensor image pairs. The results
for the best cutoff frequency are given in column 7. Comparing the digital GRADI operator
(column 6) with the optical HPF (column 5), we see that the GRADI performs better in all
cases except the last one. From [5], we know that the GRAD operator whitens the image
spectrum and equalizes the pol rity of the edges in the edge-enhanced image. The improvement
for the autocorrelation of 22 * 22 is due to whitening of this uni-sensor case. The loss
for the 10011 case is due to the high CM for this pair of images. The two central correla-
tions noted in Table 1 are typical of most of the results we obtained. They verify that for
multisensor imagery (low C4), the absolute value operator improves the output correlation
SNR over that obtained with an optical or digital HPF (column 5 and column 7). Comparing
columns 5 and 7, we see that the digital HPF gives a better SNR. This is due to the fact
that a much lower cutoff frequency (0.23cy/mm) was possible with a digital HPF compared to
the optical HPF (0.86cy/mm) due to dc scatter and low image modulation.

Despite these differences, it appears that an optical weighted MSF is adequate for most
multisensor pattern recognition (with low CM < 0.5 values) if K can be set equal to unity at
a low enough spatial frequency band (see Section 7). In Figure 5, we show two of the multi-
sensor images (22 and 25) and the resultant real-time optical output correlation.

/
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7. CORRELATION WITH SYNTHETIC REFERENCE FUNCTIONS

As noted in Section 4 and as shown in Figure 3, the modulation and spatial frequency con-
tent of the synthetic reference imagery was quite low. To allow optical correlations on these
data with measureable SNR0 values (with the correlation noise level above the system's scat-
ter level, see Figure 2) and with the beam balance ratio set equal to one at a sufficiently
low spatial frequency (see Figure 3 and Table 1), it was necessary to photoreduce the data
and to apply more sophisticated preprocessing operators. In Figure 6, we show typical ref-
erence and sensed inout images (Lockheed building). Differences in the contrast, detail on
the roof and in image noise (e.g. trees and cars are present in the sensed image, but are
absent in the synthetic reference image) are obvious.

We first photoreduced the sensed and reference imaqes in this data set by a factor of 4.4.
This effectively increased all spatial frequencies in the data by a factor of 4.4. (Recall
from Section 6 and Table 1 that the optimal spatial frequency cutoff found from the digital
correlations on the multisensor data was 0.23cy/mm, whereas our optical system could not be
used below 0.86cy/mm. Also note from Figure 3 that the synthetic reference imagery has neg-
ligible modulation beyond 0.8cy/mm). The photoreduction performed thus allows K to be set
equal to one in the more appropriate lower spatial frequency bands. With this step, we ex-
pect experimental results that agree with theory.

As new preprocessing operators, we use gray-tone modification (GTM) and small-surface
lysing (SSL). These digital- preprocessing operations (81 were performed by Technology Ser-
vices Corporation, who provided us with 35mm transparencies of the sensed and synthetic tar-
get imagery with and without these preprocessing operators applied. The GTM operation cal-
culates the number of pixels in the sensed and reference images with given gray level values.
It uses this histogram to equate gray levels in the two images with approximately equal dis-
tributions. It alio performs histogram equalization (91 to allot the optimal portion of the
gray level range available to those image regions with appropriately large distributions for
a given gray level. Latching is used to provide a good mapping or histogram of the gray
levels in the imagery. This preprocessinq operator thus makes the gray levels of correspond-
ing regions of the sensed (input) and reference (synthetic) imagery equal plus increases the
contrast and modulation of the imagery. From our discussions in Sections 3, 4 and 5, these
are both desirable image attributes for optical correlation. The SSL preprocessing operator
is used to remove small surfaces that are not connected to larger ones. This is most useful
in removing the noise produced by edge enhancement. This operation is achieved by a smart
median replacement of all image pixel levels. This is achieved by first determining thresh-
olds for the normalized magnitude of an edge and the correlation length of the image tex-
ture from a training set.

Our experimental data obtained on the down-looking ATH data base for the Lockheed imagery
are summarized in Table 2. In columns I and 2 , we provide the results of correlations with
a synthetic reference function with a high u' spatial frequency band setting. In columns 3
and 4, we provide analogous data for the GTM preprocessed synthetic reference with a much
lower u' spatial frequency cutoff band emphasized. The different entries in each column cor-
respond to different preprocessed inputs (SYN - synthetic, SEN - sensed, GTM/SSL refers to
data with both the GTM and the SSL operators applied). The output correlation plane SNR
values for each case are denoted in columns 2 and 4 for comparison.

In these optical correlation experiments, the use of photoreduced imagery allowed lower
u' settings to be used and hence more reliable results to be obtained. This was possible
because the effects of scatter from dc spatial frequency data was decreased with the increased
image spatial frequency provided by the photoreduction. All SNR values with the GTM pre-
processed synthetic reference (column 4) exceed those obtained with the original unprepro-
cessed synthetic reference (column 2). As row 1 in Table 2 shows, the GTM operator improves
the SNR of the autocorrelation (due to the increased data modulation provided). As row 2
shows, better cross-correlations were obtained with the GTM preprocessed reference and even
better results (column 4) with a GTM preprocessed sensed image also. The SSL operator alone
(row 5) gave poor results and when used in conjunction with the GTM operator (row 4), the
results obtained were inferior to those of the GTM operator alone. These data lend credence
to further studies of these and other more advanced preprocessing operators. The decrease
in performance obtained when the SSL operator was used (even if used in conjunction with the
GTM operator) indicate that more analysis and attention should be given to the details of
this operation (i.e. any image distortion it introduces, any image modulation decrease it
produces, and any true image data it removes). Additional ep.eriments performed with the
SSL operator on data with a large number of independent objects indicates that the latter
issue may be of major concern in future work. In Figure 6c, we show the optical correlation
output obtained from the given sensed and synthetic reference functions shown in Figures 6a
and 6b.

p . . . , .. .. . 7 . ..
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Table 2. Correlations with synthetic reference
imagery using various preprocessing operators
(Lockheed database).

SYNTHETIC REF GTM (SYN) REF

ut - 1.05-1.8 cy/mm ul - 0.22-0.41 cy/mm

INPUT SNR (dB) INPUT SNR (dB)

SYN 16 GTM (SYN) 19
SENSED 6.5 SENSED 8
GTM (SEN) 5.5 GTM (SEN) 10
GTM/SSL (SEN) 4.0 GTM/SSL (SEN) 9.5
SSL (SEN) 2.0 SSL (SEN) 3

8. SUMMARY AND CONCLUSION

In this paper, various aspects of image quality and its effects on the output correlation
from an optical weighted matched spatial filter correlator were addressed. The fixed pixel
pattern of the input using digitized data was noted and the effect removed by the use of a
simple spatial frequency in the transform plane. Three sources of optical correlation plane
noise were then noted and the effective data modulation, spatial frequency and input aper-
ture effects were discussed for each. Low spatial frequency data often precludes setting K
at sufficiently low spatial frequencies. Use of photoraduced imagery was shown to overcome
this problem. Synthetic reference imagery was found to have low modulation and very low
spatial frequency data. The correlation of this reference data was found to be possible with
the use of advanced digital preprocessing operators such as gray-tone modification and small
surface lysing. Aperture correlations were found to dominate all image correlations. This
effect was overcome by the use of different apertures for the input and reference function
together with high pass filtering. A comparison of optical and digital correlations on
multisensor imagery showed that the high pass filtering action performed by the weighted
matched spatial filter correlator was appropriate for the majority of multisensor image pat-
tern recognition problems (this class of multisensor imagery was found to be measureable by
a correlation measure, the energy normalized correlation at registration). From these
studies, much new insight on the effect of image quality on the performance of an optical
matched spatial filter correlator have been determined together with the use of weighted
matched spatial filter high pass filtering for multisensor pattern recognition and the need
for advanced preprocessing techniques in correlations with synthetic reference imagery.
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ABSTRACT

A general multisensor image processor and image model are described and experimental ver-
fication of their use are provided. The pixel correlation coefficient is shown to be an
adequate measure of the statistical independence of the gray levels in a multisensor image
pair and to be of use as a guide to selecting various preprocessing operators. Experimental
results obtained on the various multisensor image data bases verify our theory quite well
and have contributed considerable practical insight into the processing of imagery with
random contrast reversal intensity differences.

1. INTRODUCTION

In nearly all practical pattern recognition and image registration applications, the in-
put and reference images can differ in a variety of ways and for many diverse reasons. In
this paper, we consider the registration or recognition of images of the same scene when the
images originate from different sensors or from the same sensor under different conditions.
The latter case arises in infrared imagery and can also be due to differences in weather,
seasons, sun angle, time of day, etc. We term all such data as multisensor imagery (MSI).
We distinguish MSI from unisensor imagery (USI) data by noting that in MSI data, the gray
level of the same object in different images is independent. when total independence exists
we refer to the data as pure MSI. When total dependence occurs, we classify the data as USI.

Much MS imagery lies between the extremes of pure MSI and pure USI data. As our measure
of the class of imagery, we use the pixel correlation coefficient for a reference Ir and
sensed Is image pair, f (x)I W dx

0 r (x *s ((1)

[fI 2 (x) dxI 2 (x) dx I

One-dimamainal functions are used for simplicity and the correlation peak is asssumed to occur
at the origin with no loss in generality. The ratio in (1) of the intensity of the corre-
lation at registration to the product of the energies in the two images is thus a useful
normalized measure of how well they correlate. When p - 1, the imagery is pure USI. W-here-
as, when o - 0, the data is pure MSI.

As our performance measure, we select the output signal-to-noise ratio SNR0 in the corre-
lation plane, defined by

SNR0 Elc(0)1 - (2)SN 0 Varic(T)." I >70,

The numerator in (2) is the expected value of the correlation at registration 7 5 0 (with
the expectation taken over all scenes and conditions). The denominator is the standard devi-
ation of the output correlation far from the correct registration point. This SNR is easily
measured in the laboratory and it can be related to other SNR measures as well as to the
probability of detection PD, the probability of false alarm PFA, the probability of correct
registration PC and the probability of error PE. It is thus a most appropriate parameter
to use in comparing various image registration systems.

A wealth of work in MSI registration exists. However, in some cases (e.g. [14]), the
data used does not exhibit random contrast reversals. Moreso, no noise was present in sev-
eral of the cases analyzed (e.g. (151]). Thus, such cases actually typify USX data rather
than XSI data. Moreso, no particular preprocessing operations or techniques are necessary
to register such imagery. In our work, we are concerned with nure MSI data, with those
imaqe features that give rise to such data, and with the optimal processor to be used for
such data recognition problems. Many heuristic methods have been advanced and used to reg-
ister MS data. These involve optical [1,2] and digital[3-51 systems, and edge detection
techniques (6,7J and template-matching methods [8,9]. The most successful results have been
obtained using gradient edge detection preprocessing operators followed by correlators (3,10-
12].



Our work makes use of this prior art. However, we envision a hybrid optical-digltal
processor in which the preprocessing operations are performed digitally and the correlation
is performed optically. We also adont a more fundamental and basic approach to this 'IS reg-
istration problem that includes a supporting image model and a general MSI processor archi-
tecture. This model and general processor [13) are summarized in Section 2. The highl;ghts
of our statistical analysis of this processor were provided earlier [13]. In this paper, we
thus concentrate on the experimental verification of these results. In Section 3, we first
show that conventional correlation cannot work for *4SI data and we advance a communication
analogy for this problem. Our results provide considerable insight into the nature of the
MSI registration problem. Following a description of the MSI data bases used (Section 4),
experimental data on six aspects of MSI registration are advanced. These include: the use
of o as a measure of the type of imagery (Section 5), how the number of objects in the image
affects the result (Section 6), the need for Gaussian-histogram reshaping (Section 7), veri-
fication of our MSI model (Section 8), a comparison of high pass filtering, gradient and
image whitening operators (Section 9) and threshold selection when noise is present in the
data (Section 10).

2. L'MAGE MODEL AND MULTISENSOR PROCESSING ARCHITECTURE [13)

We define an object as a region with a homogeneous gray level, separated from other ob-
jects by edges. Although the gray levels of the samne object in different MSI are statisti-
cally independent random variables, the edges of the objects are preserved in the MS imaging
process. In our mathematical model of pure MSI data, the scenes to be registered are assumed
to contain objects larger in extent than several pixels. We assume zero-mean data. This is
directly realized in optical matched spatial filter processors. In digital processing, this
assumption is equivalent to removing the mean of the data. Since the mean of the data does
not provide reliable information, such an assumption is practical and necessary.

A cross-sectional scan through a MS image is thus assumed to yield a train of pulses
whose amplitudes and locations are random variables. The location of the pulses (image
edges) are assumed to have a distribution that corresponds to a low-density Poisson statis-
tical distribution with an average pulse rate X per unit distance. The amplites of the pulses
are assumed to have zero-mean Gaussian density functions. We assume white zero-mean Gaussian
noise to be added to the sensed image. We also assume the pulse trains, their amplitudes and
noise to be stationary and statistically independent.

,, i 1SPECTRUM J .) E1GE J POLARITY , fHISTOGRAM THRES"t WHITENING'--W 1JH CME :I EQUAL IZATTON( RESHAPING HODIG

JCORRELATOR PR
I, _SPEC'rRUMi C_ POLARITY L !11 _FTMoGRES-
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FIGURE I General MSI Pattern Recognition Processor

Our general EIS processor model considers five preprocessing operators (applied to both
the reference Ir and the sensed Is images) followed by a correlator as shown in Figure 1.
Spectrum whitening refers to producing data spectra that are white (i.e. with the Fourier
transforms of the image plus noise being uniform for both the sensed and reference imagery).
Since the edges of the objects are the common features that are preserved in MS image pairs,
edge-enhancement is a necessary preprocessing function for MSI registration. However, since
the gray levels of all objects in an image are random, then so are the polarities of all of
the edges in an edge-enhanced image. We thus also consider a simple nonlinear absolute oper-
ator and its use in equalizing the polarity of the edges in an edge-enhanced image pair. We
will consider various edge-enhancement operators separately. However, experiments have shown
(Section 31 that edge-enhancement operators generally also provide approximate whitening
operations. Thus, in practice, both of these preprocessine operators are included as
one rather than separately. We find the gradient operator to work quite well and thus we
compare the need for polarity equalization by applying the signed gradient operator (SGN)
and the absolute value IGRAD| gradient operator to the same image pair and comparing the
resultant output correlation SNR0 . lie use the approximate GRADJ operator

IGRADI. +(i. ii,j) + (I. - lij)_, (3)
ij i l,j i) i,j~l Ii,j

for the absolute value of the gradient at pixel (i,j) of image I because it is easily real-
ized digitally and because experimental verification indicates that this operator is quite



useful.

A histogram reshaper is the next preprocessing operator we consider. To use a correlator
as the final image registration step, the histogram of the pixel's gray levels in the imagerY
should theoretically be Gaussian. Forming the magnitude of the gradient of an image is a
quite nonlinear operation that is expected to significantly change the pixel's histogram.
We consider the importance of the pixel's histogram distribution by applying the nonlinear
mapping

Y = log(X + 1) (4)

to the histogram of the ordered pixel gray levels X. This histogram reshaping function was
found empirically to approximately produce the Gaussian histogram theoretically needed for
a correlation image registration processor. The threshold operator is applied to the pixel
intensity levels X to reduce additive noise in the data prior to correlation. This simply
involves replacing pixels with intensity levels X < Th and X > Th by new values Y such that

S X Th (5)Y = X h ,X >Th" 5

In Sections 5 - 10, we present the results of various experimental studies of these dif-
ferent preprocessing operators and other issues associated with the image model and general
multisensor processor. For example, we consider: the Poisson pulse rate ), number of ob-
jects present in the image, threshold selection, input SNR i , other edge-enhancement opera-
tors, and image-whitening operators. Theoretical analyses of the image model and the MS
processor architecture were advanced earlier by us [13]. Thus, our present emphasis is on
the experimental verification of the predicted results.

3. USI AND MSI PROCESSING

To provide insight into the differences between USI and MSI data and the processing nec-
essary to register each, we highlight the results of a statistical analysis of conventional
correlation (with no preprocessing) applied to pure MSI data. We also advance a communica-
tions analogy by which the potential need for the various preprocessing operators included in
our MS processor model of Figure I can be seen. For computational reasons, we use the cor-
relation SUR, defined as the ratio of c(0) to the standard deviation of c(T) for T - 0 as
our performance measure. Applying standard statistical assumptions about the data, it is
quite easy to show that both c(O) and c(-) are zero-mean Gaussian random variables with
standard deviations of ao/1'n and o0//'n- respectively. In this notation, a0 is the standard
deviat.'on of an object of area equal to that of the full image, n is the number of indepen-
dent objects in a given image and kn (where k > 1) is the number of apparent objects ores-
ent in the overlap of two MS images far (x - -) from registration. In practice, c0/,nt is
a lower bound on the correct standard deviation.

Replacing the standard deviation by its average, or the statistical variance, the S11R0 is
seen to be a zero-mean Gaussian random variable with standard deviation vR. Thus, for any
desired SNR0 = Th, PD is non-zero and PD increases as k increases ( and hence as the number
n of independent objects in the image increases). For k - 4, we find PD < 10- 6 for even alow
desired SNR0 of 10. The problem of correct registratio" PC was also derived for this case.
We found that for n - 50 and k - 3.2, PC was = 10-2. Moreso, we showed that a random
choice of any correlation peak, rather than selection of the largest one, gave a better PC
value. Thus, conventional correlation on MSI data is seen to yield quite poor performance.

Whitening the spectrum of imagery improves the performance of USI correlations, but is of
no use in MSI correlation because it simply increases the amplitude of all peaks in the cor-
relation plane (the correct peak as well as all sidelobes). It also increases n and thus
decreases PC for MSI data even more. For USX data, the overlap of two images have positive
random variables with a positive mean probability density function (rather than a zero-mean
probability density function as occurs in MSI data). Thus, for USI data, SNR0 is propor-
tional to /'n and PC improves as n increases, whereas for MSI data SNR0 is independent of n
and PC degrades as n increases (unless other preprocessing operators are used). Thus, in-
creasing n by whitening improves the performance of a USI correlator, but degrades the per-
formance of an MSI correlator. This insight is useful in explaining why various preproces-
sing operators appear to be useful in some MSI registration applications, but not in others.
In some MSI registration work, the image was dominated by one key object, in which case n -
i. For this case, the conventional correlation applied to such data will yield satisfactory
results (simply because the data is really USI not MSI).

In our work, we are quite concerned with the fact that the results of the ad hoc applica-



tion of different preprocessing operators to image pairs (with no attention to the image
models) not be extended to the general case. We summarize these remarks in Table 1 and re-
emphasize the difference between USI and MSI data. Our D measure in (1) is useful in this
regard. For pure USI data, 0 = 1; whereas for pure MSI data, o = 0. When n - 1, z = 0 and
conventional correlation is useless. When SNR0 approaches zero, so does P. However, if ')
is large (= 1), SNR o can still be low (e.g. if the image is a periodic function). Note that
a need only be evaluated at one point (the correct registration point). Thus, we can calcu-
late p for a few representative image pairs in a large image ensemble and use the preproces-
sing appropriate for that p value for the entire image data set.

Table 1. Dependence of USI and MSI statistics on n (Whitening only)

PDF of Correct Peak POF of Sidelobe SNR P c

Average Standard Deviation Average Standard Deviation _

USi v! v- 0 =/ Increases as
n increases

MSI 0 =/" 0 =f INDEP Decreases as
n increases

In image registration, the correlation length n of the data is another parameter useful
in analysis (especially concerning spectrum whitening). If n = 0, an image (or more proper-
ly speaking, its pixels) is (are) said to be uncorrelated and its spectrum is nearly white.
In the more common case, n # 0 and often n = 1 and then the image (or its pixels) is (are)
highly correlated. Much work on image enhancement and spectrum whitening exists [4-5, 15-
171. However, quite different cases (no noise and noise), performance measures and appli-
cations were considered in these works. A auiary of this work is thus of use in clarifying
the results obtained and the different cases being addressed. In missile guidance, we first
distinguish between the acquisition phase of imag registration (in which the problem is to
detect the image) and the homing phase (in which the accurate registration or location of
the sensed image within the reference image is of concern). Our k.in (2) is appropriate
for the first case; whereas in the second case our concern is to minimize the variance of
the correlation at the peak location (in this case, the denominator in (2) is replaced by
the variance of the correlation at the registration peak point). In this second case, a
correct registration is assumed to have been determined and the concern within the image
registration processor is the accurate location of the correct registration point.

Our immediate concern in this present work is to optimize PD rather than to optimize reg-
istration accuracy. However, much of the prior work on both problems is of use. For the
case of no noise and when n = 0 ( a white image spectrum), optimization of the SNR~in (2)
requires the use of only a simple conventional correlator [151. WIhen n u 1, optimization
of the SNRoin (2) requires the application of a second derivative preprocessing operator to
one of the images prior to correlating them. It has also been shown (5] that applying a
second derivative operator to one image is equivalent to applying a first derivative opera-
tor to both images. Since the work in (15) assumed no noise in the data, it is of minimal
concern to us, since simpler techniques such as simple image differencing can be used in
such cases rather than correlations. When noise is present in the images and when the cor-
rect registration point has already been deteminedoptimization of the image registration accu-
racy can be considered. In this case, a noise-whitening filter is necessary [4,17] and a

matched spatial filter system results in which both inputs are first whitened with respect
to the noise. Using conventional noise models, the noise-whitening is shown to be equivalent
to a first derivative plus a mixed derivative operator. Thus, for the USI case, both ap-
proaches are comparable and result in the need for a derivative preprocessing step. In the
noise case, this image differentiation performs the necessary spectrum whitening with respect
to the noise.

Although no formal analysis of the case of detection optimization on MSI data with noise
present has been advanced, we can use this prior work [15-17] and a communication analogy to
develop the optimum processor for our MSI case. In this case, we model the additive noise n
as the sum of the input noise plus the sensed image evaluated far from the correct registra-
tion point. We find that the reference and sensed images should both be whitened with re-
spect to n prior to correlation. A more important observation tharesults is that optimi-
zation of the SNR at the correlation peak (for-registration accuracy optimization) is not
equivalent to optimization of our detection SNR in (2) unless the noise spectrum has statis-
tics similar to the imagery itself. In the cases for which this technique has been used [4,
16,17], this has been the case, since the noise in the imagery was defined as the difference
between the images. In this case, the statistics of the noise A in the imagery happens to
agree with our n definition by implicit assumption and thus the techniques in [4,16,17] are
appropriate. However, for general MSI data, 1he noise and image statistics differ and our
techniques are necessary (i.e. whitening both the reference and sensed images with respect
to n and applying Gaussian histogram reshaping).

b.q



A subtle point associated with our communication analogy is that we do not assume the a
priori use of a correlator. Rather, we derive it and include the Gaussian histogram reshap-
ing outcome of that derivation in our architecture of Figure 1. From these considerations
and by proper analysis of prior work, our general MS registration system of Figure 1 resul-
ted. From our assumptions on the low frequency of image edges in our model, practical
imagery is expected to have low n and thus the first derivative operator is expected to ap-
proximate an image whitening operator. We thus include these considerations and our obser-
vation that the polarity of the edges in a differentiated image should be equalized by a
nonlinear operator such as the absolute value operator (for MSI data) and we thus consider
the use of the IGRAD operator in (3) to perform the three operations of spectrum shaping,
edge-enhancement and polarity equalization shown in Figure 1.

4. MSI DATA BASES

To experimentally verify the theory, remarks and models advanced in [13] and in Sections
2 and 3, six real and synthetic MS image data bases were used. Two sets of color images of
the same scene in the blue, green and red primary color bands were used as simulated MS data.
Our results indicated that such data were nearly pure USI. Any preprocessing was found to
yield poorer results than a conventional correlation (as predicted from Section 3). Any
threshold operator (with any choice of the threshold) also gave poorer results (due to the
high SNRi of the data) since this operator actually removed low intensity image data rather
than noise. This is also in agreement with the theory in (13] which indicated that for
large SNR data, the optimum threshold was zero. Thus, no experimental results are included
on this data, although the results obtained clearly affected our analysis and selection of
future MS image data bases.

We used real downlooking planimetric imagery of Ames Research Center (MS data base 3)
taken in three MS bands (Table 2) to analyze the effects of p and SNR i on the need for the
GRADI = GRD preprocessing operator. Our results are presented in Section 5. We refer to
this data base as downlooking target (DLT) imagery. In Tables 3 and 4, we summarize the
contents of our MS image data bases 4 and 5. We refer to these as short range targetlooking
(STL) and long range targetlooking (LTL) respectively. They contain images of the same Ames
site as in Table 2 but at a depression angle of 30" and with a slant range of 2880 feet and
an altitude of 1440 feet (STL data of Table 3) and with a longer slant range of 5000 feet
and an altitude of 2550 feet (LTL data of Table 4) corresponding to the same 30' depression
angle. The major difference in these data are the larger number n of objects present in the
LTL data compared to the STL data. In Section 6, we analyze how the number n of objects in
the image affects the SNR0 obtained. The effects of Gaussian histogram reshaping on the
correlation of these data are addressed in Section 7 and verification of the MSI model ad-
vanced in [13] and summarized in Section 2 is provided in Section 8 for these data.

Table 2. Downlooking target (DLT) Ames data base

IMAGE SENSOR X(um-

Thermal IR 8-12

SIO Near IR 1.06

Sli Near IR 0.8-0.95

Table 3. Short range (2880 feet) target- Table 4. Long range (5500 feet) target-

looking (30') (STL) Ames data base looking (30') (LTL) Ames data base

IMAGE SENSOR A(um) IMAGE SENSOR X(Pm)

S2 Thermal IR 8-12 S22 Thermal IR 8-12

S3 Visible 0.38-0.73 S23 Visible 0.38-0.73

$4 Near IR 1.06 S24 Near IR 1.06

S5 Near IR 0.8-0.95 1 S25 Near IR 0.8-0.95

A simulated MSI data set (denoted by SMS) was also prepared by generating and randomly
adding circles of different radii, central locations and gray levels. The SMS image data
pairs so generated represent pure MSI data. In Section 9, we compare the use of high pass
filtering (IPF) and the JGRADJ operators to the whitening (WIT) operator for this synthetic
data as well as for the LTL data set. Our primary use of the SMS data is in verification of
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the optimal threshold level to use (see Figure 1 and t131) as a function of the edge pulse
rate X and the SNRiof the input data. In Section 10, we analyze this issue by adding con-
trolled amounts of white Gaussian noise to the SMS data, performing the indicated preproces-
sing and comparing the results for various threshold and SNR i levels. Our summary and con-
clusions are then advanced in Section 11.

As indicated in Tables 2-4, we denote the different image pairs used in all digital cor-
relation simulations by specific numbers S2 - S25. The simulated imagery are referred to as
SIMI - SLM4, where X = 14 objects per image length are used for SIM1 and SIM2 data and ' = 10
for SIM3 and SIM4 data. We denote the preprocessing operator used by the abbreviations:
SGN (gradient with sign preserved), GRD (absolute value of the gradient as defined in (3)),
GAS (absolute value of the gradient with Gaussian histogram equilization applied) following
the image number. We denote the different high pass filtered versions of each image by FILI.
FIL2, etc. and the absolute values of these images by AFILI, AFIL3, etc. (see Section 9).
Our experimental data generally contain experiment number, input image pairs correlated, the
output correlation SNR0 value obtained, the measured P value for the image pair and remarks
on the experiment as necessary.

5. o MEASURE AND !GRAD! OPERATOR

In Table 5, we list our experimental data obtained on the DLT data base of Table 2. Ex-
periment one shows the large SNR O - 21.3 autocorrelation obtained. Comparing correlation
patterns from experiments one ang two (Figure 2) shows that the !GRADi preprocessing opera-
tor yields a larger SNR value and a narrower correlation peak width (due to the spectrum
whitening produced by tae edge-enhancement operator). Comparing the results of the cross-
correlation experiments three and four (Figure 3), we see that for a low (0 - 0.26) corre-
lation coefficient value (as occurs here), SNR 0 is remarkably improved by the 1GRADJ = GRD
preprocessing operator. From Table 5 (see * note) and Figure 3, we also note that the
registration accuracy of the correlation on GRD preprocessed data is better. Similar re-
sults are obtained (experiments five and six) for image pairs eight and ten (because of
their low P - 0.28 correlation coefficient). However, for image pair ten and eleven (exper-
iments seven and eight), their P - 0.81 value was quite large. This is due to the common
polarity of the edge data in this image pair. This image pair thus corresponds to USI rather
than MSI data. The observed 4.8 loss in SNR 0 of the GRD preprocessed imagery for this pair
verifies the theory advanced in [13] and Sections 2 and 3. From these experimental data, we
conclude that 0 is a good measure of whether a given image pair is USI or HSI (with o - 0.5
being an approximate break point). We also conclude that GRD preprocessing improves the
correlation SNR0 of MSI imagery and degrades that of USI imagery and that better registra-
tion accuracy and narrower correlation peaks result from the use of GRD data and thus that
spectrum whitening is performed by the GRD operator. More experimental data than the small
sampling given in Table 5 was obtained and used to support our conclusions. However, space
permits the inclusion of only selected but representative examples of these results.

6. EFFECT OF THE NUMBER n OF OBJECTS

In Table 6, we summarize the results of correlations obtained on the STL and LTL image
data bases with attention to the SNR improvement obtained using the GRD operator as a func-
tion of the number of objects n in the input imagery. In experiments one and two, we show
the autocorrelation SNR gain (9.8 vs 21.2) obtained due to the larger number of objects n
present in the LTL data*. In experiments three-four and five-six, an SNR 0 improvement of
2.3 vs 3.1 and 2.9 v 6.4 were obtained with the GRD preprocessing operator. This corre-
sponds to an average SNR0 gain by a factor of 1.8 for the STL data. In experiments seven-
eight and nine-ten, we consider similar data for the long range imagery (LTL) containing
more objects. The SNR0 improvements (3.3 vs. 11.6 and 4.6 vs 14.4) represent a much larger.
gain factor of 3.4. From these data, we conclude that the use of the JGRADi - GRD prepro-
cessing operator becomes more necessary and improves the performance obtained by a larger
factor as the number n of objects in the image increases (and henoeas the imagery more closely
approaches that of our pure MS1 model). As before, additional data beyond that included in
Table 6 is available to substantiate these conclusions. In addition, the image registration
accuracy is better and the width of the correlation peak is narrower when GRD preprocessed
data is used. These trends verify our theoretical remarks advanced in [131 and Section 3.

•Larger n also means large Signal Bandwidth Product (SBWP).
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Table 5. Correlation data for the OLT data base

EXPERIMENT INPUT-REF o I SNR 0  COMMENTS

7 S8e58 l.0 21.3 Auto correlation

2 S3.GRD S8.GRD 1.0 35.2 Auto (.*.USI), GRO does whitening

3* S86ll 0.26 3.0 Jt. is small, thus MSI; GRD
4 S8.GRD@Sll.GRD 0.36 11.7 improves SNR 0

5* S86lO 0.28 2.9 is small, thus MSI; GRO
6 S8.GR0SO.GRO 0.22 7.0 improves SNR 0

7 SlOWSll 0.81 16.9 p is large, thus USI; GRD
8 SO.GRVSII .GRD 0.48 12.1 degrades SNR 0

*Peak location in error by 3 pixels

anle 6. Effect of number n of objects on MS or-elat-ons

EXPERIMENT INPUT-REF p SNR 0 COMMENTS

I STL S2VS2 1.0 9.8 More objects, more SBWP and
2 LTL S22OS22 1.0 21.2 larger autocorrel SNR 0
3 STL S20S4 0.23 2.3
4 STL S2.GRD@S4.GRD 0.08 3.1 Average JGRADI improvement
5 STL S2WS5 0.33 2.9 is 1.8
6 STL S2.GRD*SS.GRD 0.24 6.4

7 LTL S229$23 0.37 3.3
8 LTL S22.GRD S23.GRD 0.26 11.6 Average IGRADI improvement
9 LTL S22 S25 0.27 4.6 is 3.4

10 LTL S22.GRD S25.GRD 0.29 12.5

7. NEED FOR GAUSSIAN HISTOGRAM RESHAPING

We now consider the LTL image data base with attention to the improvement obtained by use
of the GAS preprocessing operator (including Gaussian histogram reshaping) compared to the
GRD (magnitude of the gradient) preprocessing operator alone. Comparing the results of ex-
periments one-two in Table 7, we find a gain of 6% for the autocorrelation case. From ex-
periments three-five a 13% gain is observed due to the GAS vs the GRD preprocessing Operatr.
From experiments six-eight, a larger 32% gain is found. From these brief experiments and
others, we conclude that the addition of a Gaussian histogram reshaning preprocessini ;,era-
tor can provide a 15% average improvement in SNR0 . Analogous data taken on our SMS Lmacery
agree with these results.

Table 7. Improvement obtained (LTL) by Gaussian Histogram Shapening

EXPERIMENT INPUT-REF 0 SNRJ COMMENTS

S22. GRO*S22. GRO 2 50.3 6% Gain
2 522.GA&S22. GAS 1 52.9

3 5221S23 0.37 3.34 S22.GRDS23. GRD 0.26 11.6 13% Gain
5 S22.GAS $23.GAS 0.32 13.1

6 S22 $25 0.27 4.6
7 S22. RD S2S. GRD 0.29 12.5 32% Gain
8 S22.GAS S25.GAS 0.36 16.5

B. VERIFICATION OF THE MS MODEL

In Figure 4, we show the cross-sectional scans through column 71 of images S22 and S25
after GRD preprocessing. Close scrutiny of the data is necessary to ide.tify common edges
in the two scans. To facilitate such an analysis, eighteen of the common edges in these two
images have been labeled in Figure 4. From this figure, we note that the amplitude of the



common edges differs quite significantly between the two images and that all edges are noC
ideal delta functions (but rather that their widths denend upon the sharpness of the edgetransitions in the original data). From an analysis of these and other cross-sectonal

image scans, the validity of our MS image model advanced in (13) and summarized in Sect:on 
has been verified. For our SMS data, nearly exact values (low-density Poisson dpta rates
per unit image length) of = 0 and 14 were obtained, measured and experimentally verified
(see Sections 9 and 10).
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0 20.0 '0.0 60.0 80.0 100.0 1-0.3

(4a) (4b) Us.2.

Figure 4 Cross-sectionvl scans through column 71 of
images S22.GRD (left) and S25.GRD (right)
verifying our MSI model.

9-. COMPARISON OF HPF, GRD AND WIT OPERATORS

The GRAD I preprocessing operator appears attractive for edge-enhancement and whitening
of MS data, where polarization equalization is necessary. A high pass filter (HPF) is anoth-
er attractive edge-enhancement operator, since it can be realized optically and is inherently
present in the synthesis of a matched spatial filter (181. It is straightforward to show
that the width of the pulses in the train of pulses produced by the HPF version of an image
decreases as the cutoff frequency f0 of the HPF is increased and that the energy in the
pulses and hence the useable data modulation also decreases as f0 increases. Conversely,
the area of the pulses produced by the GRD operator is constant. We thus expect the GRD
operator to be superior to the HPF edge-enhancement operator.

In Table 8, we summarize the results obtained using the CRD, HPF, and HPF operators for
the LTL data base. To properly compare these operators, various f0 HPF cutoff frecuencles
were tried and only the ones with the best SNR0 are reported. The HP filters are denoted
by the suffix FIL (filter) following the image number. The results of correlations on data
preprocessed using the absolute value of the HPF operator are denoted by the suffix AFZL
(the best filter cutoff frequency was again used in these experiments). The results in
Table 8 are easily explained. First, we note that the HPF preprocessed data (experiments
two and seven) yield better SNR0 than was obtained with no preprocessing (experiments one
and six) . This indicates that the image pairs are not pure MSI, since if they were, SNR0 =
0 would have been obtained (see Section 3). The absolute value of the HPF operator shows a
loss in SNR0 in both cases. This occurs because the polarity of the edges in the image pairs
contain common information (again, this occurs because the data are not pure MSI). The GRD
operator yields larger SNR0 values than any l F operator and the GAS operator (the absolute
value of the GRAD plus Gaussian-histogram reshaping) yields still better results.

From these data, we conclude that the HPF operator is inferior to the GRD one, even for
non-pure MSI data. In Figure 5, we show three HP filtered versions of image S22 with in-
creasing cut-off frequency f0 . As predicted, the edges of the image become more enhanced as
f0 is increased, but the image contrast decreases (i.e., the energy in the edies decreases).

. . .. . .. . .. .. . .. ,,, , , , . .. . .. . . . .



Table 8. Edge-enhancement operator tests (LTL data)

EXPERIMENT INPUT-REF SNR COMMENTS

1 52 2ff2 3 3.3
2 S22 FILZ @S23.FIL2 9.7 HPF better tnan no preproc

(not MSI)
3 S22.AFIL223.AFIL2 8.0 Abs Value gives loss since

not MSI4 S22.GRDPS23.GRD 11.6 GRD better than HPF
5 522.GAS@623.GAS 13.1 GAS best of all

6 S22;25 4.6
7 S22.FIL3S5.FIL3 11.7 HPF better than no preproc

(not MSI)8 S22.AFIL3@S25.AFIL3 6.3 Abs Value gives loss since
not MSI

9 S22.GR QD25.GRD 12.5 GRD better than HPF
10 S22.GASS25.GAS 16.5 GAS best of all

31

(.) S22.flLL (b) szz.nl, () 122.nL3

Figure 5 Three filtered versions of image S22 with increasing cutoff frequency.

Similar experiments were performed on the SMS imagery with even more dramatic results(since this synthetic data was essentially pure MSI). The highlights are included in Table9. From experiments one and two, we see that negligible SNR0 occurs for the cross-correla-tion with no preprocessing (as is expected for MS data). A WIT (whitening) operator wasalso applied to this data. It gave excellent results foz the auto-correlation (experimentthree). Since this case corresponds to pure USX data, this result is expected. The muchlower SNR0 obtained with the WIT operator in cross-correlations (experiment four) verifiesthat whitening is not of use on pure MSI data. This experiment four also verifies that theimage pair is uncorrelated and thus represents a pure MSX pair, From experiments five and six,we see that the HPF operator without the absolute value operator is of little use on pure MSIdata. From experiment seven, we find that our special GAS operator provides much better SNRthan does any other preprocessing operatoz.

Table 9. Edge-enhancement operator tests (SMS data)

EXPERIMEINT INPUT-REF SNR COMMENTS

1 SIMIOSIMI 6.3
2 SIMl@SIM2 0.6 Low, thus nearly pure '11SI3 SIMl.WITOSIMI.WIT 183 WIT helps pure USI (= auto-correl)4 SIMI.WITISIM2.WIT 3.7 WIT not good for nearly pure MSI
S SZM.FIL34PIM2.FIL3 2.3 HPF without abs.value6 SIMI.AFIL3*SIM2.AFIL3 15.8 ) useless for nearly pure MSI7 SI?1I.GAS@SIM2.GAS. 32.7 GAS excellent for nearly pure MST

* 0



10. THRESHOLD SELECTION AS A FUNCTION OF SN!R

In the major experiments performed on a pair of SMS data, zero-mean white Gaussian noise
was added to one of the images to produce two SMS images with SNR i - 3 and SNRi - 4. Thres
holdedversions of these images with different thresholds were correlated with a GAS prepro-
cessed version of the other image (with different gray leve. distributions). The resultant
degradation SNR/SNR0 in SNR 0 from the SNRi - - case (SNR0)is plotted in Figure 6 versus the
normalized threshold Th for the two SNRi cases. Although these data were obtained for one
isolated image correlation pair rather than the statistical ensemble necessary, the results
agree quite well with those predicted by theory [13). A clear peak in D - SNR/SNR 0 is ob-
served for Th # 0, the optimum Th increases as SNRi decreases, and the degradation becomes
worse as SNRi decreases. These experimental data suggest that our optimum Th parameter
selection technique (13] is valid.

SNR

1.0.

--- NRi =4
,0.8. NR

Th increases as SNR i decreases.
Maximum 0 decreases as SNRi

0.6- 3 decreases.

0.6- 0 0

0.4- X

0.2__

0.1 0.2 0.5 1.0 2.0 3.0

NORMALIZED THRESHOLD

Figure 6 Experimentally determined degradation in SNR 0 from SNR i - case
(SNR asa function of the normalized threshold for two different
SNR i values using SMS data.

11. SUMMARY AND CONCLUSIONS

In this paper, a new multisensor image model using random variables to represent the am-
plitude and location of the edges in an image was reviewed and experimentally verified. A
general multisensor image pattern recognition processing architecture with a wide variety of
preprocessing operators was also reviewed and the need for the various preprocessing opera-
tors was analyzed by experiments. The nonlinear polarization equalization operator and the
Gaussian histogram reshaping operator had not been included in prior multisensor processors.
Our experiments showed that the correlation coefficient o was a useful measure of whether an
image pair was USI or MSI with o > 0.5-0.6 being indicative of USI data.

For MSI data, we showed that HPF was inferior to the GRD operator, that HPF without an
absolute value operator was useless, that Gaussian histogram reshaping imnroved the output



correlation by an average of 15%. We verified the major theoretical remarks we advanced
earlier [131 regarding how the number of independent objects in the image affects the data
and moreso that our theory by which the optimal threshold can be selected was valid. These
experimental verifications provided much insight into the nature of multisensor image patter:
recognition.
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ABSTRACT

A hyperspace description of a matched spatial filter (MSF) correlator is advanced and used
to develop a new MSF that is a synthetic discriminant function (SDF). The use of this fil-
ter to recognize objects independent of their aspect is described. Terminal homing recogni-
tion of tanks from IR imagery is taken as a case study. Bandpass filtering and a new maxi-
mum common information filter synthesis concept and issues such as filter energy are described
and used to improve the system's intra-class pattern recognition ability and to overcome the
intensity differences present in IR imagery. Experimental verification is also included.

1. INTRODUCTION

The recognition of the presence of a reference object in a cluttered background and the
location of its position are old and familiar problems in pattern recognition [1]. Correla-
tion of the on-line input image with a stored reference pattern is one of the more attrac-
tive solutions to such problems. This operation can be realized both optically (in a fre-
quency plane correlator or in other architectures [2]) or digitally (using FFT algorithms
[31). However, in most practical pattern recognition problems, the input image and the ref-
erence function will differ due to intensity differences (this is especially prevalent when
multisensor or IR imagery is used) and moreso due to geometrical differences (this problem
is of major concern when the aspect angle from which the object is viewed cannot be con-
trolled). Our specific pattern recognition case study concerns the recognition and location
of M-60 tank targets from IR imagery. In this application, both geometrical and intensity
differences exist between the input and reference data..

Because of the ease with which a correlation can be performed optically, we consider the
use of a frequency plane correlator for this pattern recognition problem. Kowever, since
the performance of a correlator is well-known to seriously degrade when random contrast re-
versals [4] or geometrical distortions [S] exist, we suggest a hyperspace description of the
data, the MSF and the correlator (Section 2) to overcome these problems. Using this hyper-
space description, we develop a synthetic discriminant function (SDF) and use it as a syn-
thetic MSF in our optical correlator. In Section 3, we review our prior [6,7] SDF approach
rn terms of this new hyperspace formulation. In Section 4, we review three techniques
(Fourier transform kernels, Gram-Schmidt (G-S) techniques and Karhunen-Loeve (K-L) tech-
niques) for basis function selection with emphasis on our new G-S method. When additive
noise of zero-mean is present, modifications to the SDF synthesis procedure are required.
These issues, derivation of the correlation SNR0 in terms of hyperspace parameters and new
concepts such as maximum filter energy and the maximum common information (MCI) filter are
then developed in Section 5. Experimental verification and demonstration of this SDF ap-
proach to optical MSF pattern recognition are provided in Section 6. Our present attention
lies with improving the intra-class pattern recognition performance of the system (i.e. the
ability of the SDF to recognize different aspect views of the same reference object as mem-
bers of the same class). In a companion paper [8], we consider extensions of these tech-
niques for inter-class discrimination of tanks from other false targets and from non zero-
mean background noise.

2. HYPERSPACE DESCRIPTION OF A MSF CORRELATOR

To provide a new filter function for use in a correlator that is capable of maintaining rec-
ognition of a reference object independent of geometrical distortions, we use an alternate
hyperspace description of the input data and the filter function. We use 1-D functions for
simplicity. Each of the members of the input data set {fn(x)} of objects to be recognized
is written as an expansion in terms of the basis functions om(x) and weighting coefficients
am as

f W a It (x) . (1)

Each f in fn: is plotted as a M-dimensional vector in an M-dimensional hyperspace with axes
D. and with the projections on each axis being the a. coefficients in (1). Thus, each input
can be described as a vector



f = (al,a 2 .... a M). (2)

The basis function set is orthonormal and different coefficients anm exist for the N
different fn members of the set [fn",.

Two surfaces in hyperspace that are quiteuseful are the hypersphere and the hyperplane.
A hypersphere of radius R. is described by f -f = Rs(a constant). This corresponds to an
equi-energy surface. This can easily be seen from the definition of the energy £f of the
function f as

Ef= ,f2 (x) dx a' =f R. (3)

A hyperplane also has physical significance as the product .i two vectors (one of which g is
fixed). It also corresponds to the correlation Rfg output of two functions f and g (evalua-
ted at = 0), i.e.

g • . =Za b =ab = f'gT =O fg(O = R. (4)
rn in in --m ~ g_ R

In (4), we assume that both f and g are expanded in terms of the same tOml basis set and that
they have coefficence am and bm respectively. The energy £f in the output correlation with
no shift (T = 0) between f and g, is Rfg(O). If g is fixed (i.e. if the bm are fixed), then
the =R constant) surface is a hyperplane. This describes the output of a correla-
tor (fg) with the requirement that the correlation equal the constant Rp value.

Surface 3

Surface 2

01 axis

gl- RPI

FIGURE 1. Simplified (2-axis) hyperspace pattern recognition problem

In our MSF correlation analogy, the fixed reference function g is our MSF h. It corre-
sponds to the vector drawn from the origin in hyperspace normal to the • g = R hyperplan.
This hyperplane describes the case of a constant output from the correlator. An? f in fn)
when correlated with g, shouild lie on this hyperplane to be recognized. In Figure 1, we
show a simple pattern recognition example for a M = 2-axis hyperspace. The X's are one
class of objects to be recognized and the O's are another class of objects to be separated.
Surface 1 j;i Figure 1 describes a hypersphere with R. = Rsl. Surface 2 describes a hyper-
plane corresponding to Pp - IgL = R-1. Surface 3 represents a more complex hypersurface.
To recognize the X's and separate tiem from the object class 0, we can requir g j R_ 1
(surface 2) or = f l. Our major concern in this paper is how to select the { m}
to produce the excellent separation of the different object classes (inter-class pattern
recognition) and the excellent clustering of the data for each class (intra-class pattern
recognition) shown in this simplified example in Figure 1. The presence of noise in the data
will appear centered at the origin in hyperspace as well as around the hyperplane. In these
cases more avanced techniques (Sections 3-5) are required.

3. SYNTHETIC DISCRIMINANT FUNCTION (SDF) SYNTHESIS

In this section, we describe our general synthetic discriminant function synthesis tec-
nique and how it is used within our hyperspace description of a MSF pattern recognition cur-
relator. We write the ?n members of our training set {fn } of input objects to be recognized
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We denote our desired filter function by h. We write it as a similar expansion in the same
%DmI. basis set as

h M bm* (6)

We require the currelation of all fn with h to equal a constant R When the are ortho-
normal, this condition reduces to m

fn " h R (0 ) a b =R = constant. (7)
nn mm p

Our pattern recognition problem can now be stated quite simply. We desire to find the
filter function £ in (6) that satifies (7) for all f in the training set -fn - To do this,
we must determine the bm and the m- Four steps are required to achieve this. We first
form the autocorrelation matrix

Rfif (0) f. " (8)

of all in inputs. We then diagonallizelthe R matrix in (8). Techniques to do this are de-
scribed in Section 4. This yields the sm. We then determine the arn coefficients in (5)
from

anm .n sn" (9)

To find the bm, we pick the constant Rp in (7) (in this piper we arbitrarily select R. = 1)
and use theanm found from (9) in (7). We then know the om and the bm and hence can torm
the filter h in (6) with the necessary correlation feature in (7).

4. BASIS FUNCTION SELECTION

Let us now elaborate on the various techniques by which the { basis function set can
be determined from the autocorrelation matrix R in (8). One of twe simplest orthonormal
basis function sets are the Fourier kernel functions. Duvernoy [9-12] and Caulfield [13-14]
have used these in analogous SDF synthesis. However, details of the steps involved in their
filter synthesis and how the Fourier coefficients to be retained were chosen have not been
provided. Moreso, they selected quite specific pattern recognition problems for which the
Fourier coefficients appear to represent an attractive basis set for data discrimination.
Our concern is to develop a more general and organized approach to basis function selection
rather than relying on ad hoc techniques and use of a fixed (Fourier kernel) basis set that
might not always be best for a given general pattern , ignition problem.

In [6,71, we developed a new G-S technique for generation of a general basis function set
The algorithm is described by

0i = f (X/El

02 = (f2 (x) -Z2(r21)'l(x)/E2

m-1 (10)
$m = [fMW - ti Z m(rm) 0(x) I /Em

M-1

bM = [fM(x) - ZMZ(rmt) s( W] / EM

where R.. fi " fj are the elements of the autocorrelation matrix
m i

= Z dmn fn can be used to describe the m-th basis function as a function of the
m n~l nm-th input fm and the prior fe inputs (Z < m - i).

m
Zm = k1 mkk describes the weighting functions in (10) applied to the t - m - 1

previously computed basis functions ot and where dmk is found as above.

c1QY
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E = - .f (X) - l Z (r (x) 12 dx 1/2 is the energy normalization constant.
m m mf ITL

From (10), we note that in our G-S procedure: ZI depends only on fl, the weighted and
normalized contribution of f, is subtracted from f2 and thus 2 depends only on f2 and more-
so it contains the f2 data not present in fl, similar remarks apoly to 'm in terms of fm-i
and fm- Thus, our G-S procedure decorrelates the fn; input data set. Moreso, in many cases
M > N, in which case our G-S procedure is quite attractive since it forces M - N without the
need for the use of an ad hoc technique to selectively remove M - N basis functions. We also
note that a different ,m: basis set will result-if a different ordering of the 'fn: is used
and that for each new ordering of thefn } a new h will result. However, for a fixed fn'
data set, all h will correspond to the same hyperplane in a rotated hyperspace version of
the original space. This property follows directly from the fact that a unitary transforma-
tion does not change the relative distances between points on a hyperspace. we conclude by
noting that the output correlation Rfh(0) is evaluated at - = 0, and that this corresponds
to the case of no shift between the input and the reference function not to the value of the
correlation at its maximum peak location. We also remind the reader-that a shifted (trans-
lated) version of any input function fn represents a new input function and will result in
a new tfn" input data set and a new h ilter. In Section 5, we use these last two observa-
tions in the design of a maximum common information (MCI) filter to improve the correlation
plane SNR 0 performance of our SDF pattern recognition processor.

K-L techniques ti3-16i can also be used to diagonalize amatrix such as R in (8). We con-
sider this approach in more detail in [8]. For now, we only note that it requires an ade-
quate statistical ensemble and that it provides the optimal basis set of reduced dimension-
ality. This can greatly expedite the off-line calculations necessary to generate the SDF
function h.

In this paper,.we will concentrate on the use of the G-S technique in (10) to determine
the SDF function h to satisfy (7) for the intra-class pattern recognition problem of present
concern. The procedure, notation and terminology we use follow. Diagonalization of R in
(8) yields a set of equations for the om in terms of the fn

= Ed fn (i)

We denote the matrix with element values in (II) as the G-S coefficient matrix. Solvin;
(11), we obtain an expression for the original n inputs in terms of the I basis functions
as in (5). We denote this matrix with elements a in (5) as the target matrix, FT (or FTGS
if the G-S diagonalization technique is used). T -e equal output correlation requirement in
(7) can then be written in terms of ET as

_Th = Rpu, (12)

where u is the unit vector. Computing the inverse target matrix FT- (by Gaussian elimina-
tion or other techniques), applying F- 1 to 4l2) and recalling that ET ET = 1 (the identity
matrix), we find the expression from wIich h can be obtained is

F_ -FR u. (13)^- p

This gives h in terms of m. Substituting (11) into (13) we obtain the equation from which
we can determine A from the elements of the original input set fnl . The above notation and
terminology and specific forms for the various matrices will be provided in our experimental
data (Section 6).

5. ADDITIVE (ZERO-MEAN) NOISE EFFECTS

We now consider the effect of zero-mean additive noise on the selection of the SDF and
the performance of our synthetic MSF correlator. We desire a new correlation plane SNR0 ex-
pression and will present a simplified hyperspace model of this case. We then discuss a new
maximum common information (MCI) filter concept we use to improve the performance of the
processor. The assumption of zero-mean noise is realistic since the mean of the data is re-
moved in the digital processing of IR data and because such filtering directly occurs in
optical MSF synthesis. We will consider the case of colored noise, background noise with
non-zero mean value and false targets in [8].

The noisy input is f' = f + ;, where n is the noise vector with elements n that are ran-
dom and independent with a variance_2 n. Since the mean <n> of the noise is zero, its
average energy en avg= <n n> n Z nn and we can thus bound the noise by the hypersphere at

n
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the origin of radius D = K<n • >112, where the constant K is determined by the confidence
with which we know the variance of the noise. Since< '> = ?, we can similarly bound V to
lie within a sphere of radius r = n, of . We thus modify our correlation threshold cri-
teria in (7) to be ' h = R r to include the effects of noise. The corresponding hyper-

nspace diagram of Figure 2 hel s to show these issues under simplifying conditions such as
no attention to the distribution of n within the sphere at the origin and with no attention
to devising the optimal filter S for a specific noise distribution.

02

"f" h R

Noise sphere

R { correlation
\,(surface variation

FIGURE 2. Simplified hyperspace model showing the effects of additive noise

An appropriate SNR0 measure for the output correlation plane pattern is thus

E 1/2 .E1/2

SNRO K h 1/ h%-) 05 (14)

In (14), we have noted that p 1/2h
Fmn anwass no th t of/ r must be satisfied to avoid overlap in Figure 2.
From an analysis of the probability of correct regis trtion PC and using Bayesian logic, wechoice for r and p is r - 0.5h p. This maximizes PC and both the
probability with which the noise is bounded within p at the origi ind within r of the tn.R
hyperplane. From (14),^we see that maximizing the energy Eh of the filter and/or reducing
the noise variance <n • n> will improve the performance of the filter. We now investigate
the use of a new MCI technique and bandpass filter (BPF) preprocessing to achieve improved
SDF performance.

We can show that an upper-bound EhQB on the energy of the filter is EM = Ef (the energy
of the minimum energy input function fm in the input data set) and that a lowe?-bound EhLB =

1/(N <i/Cn>), wheie <I/En> is the average reciprocal energy in the input data set. We have
also shown that if any pair of inputs i and 2 in ffn} correlate, then Eh will be increased.
We use this observation and our remarks in Sec Lon 4 on the G-S technique to optimally shift
all of the {fnl inputs to maximize their cross-correlation, thereby increasing ch- Since
this operation aligns and maximizes the common information in the input data set, we refer
to this technique as MCI and we call the resultant S an MCI filter. Since any one shifted
version of one target aspect need be included in our input set to enable all shifted versions
of that aspect to be recognized by the resultant filter (the shift-invariant feature of the
Fourier transform MSF correlator insures this), we can simply select the shifted input
that maximizes the filter energy and hence the output SNR in (14).

A preprocessing operation that we applied prior to selection of the basis functions and
the MCI filter is a bandpass filter (BPF). This technique was described earlier 16,71 and
thus is not repeated here. We note only that its use is quite appropriate for IR pattern



recognition where the mean value is not reliable and where high spatial frequency data is
noise. This operation decreases the variance of the noise and maximizes the SNR0 in (14).

6. EXPERIMENTAL VERIFICATION

To apply the SDF, MCI and BPF pattern recognition techniques, we chose the problem of
recognizing an M-60 tank independent of its aspect from input IR imagery. This terminal
homing missile guidance problem thus incorporates both intensity and geometrical differences
between the input and reference data. As our training set, we used seven IR images of an
M-60 tank, each being a different aspect view of the target. A representative set of these
images and their digitized versions (128x128 pixels) are shown in Figure 3.

f Right Side (RS)

f - Front/Side (F/S)

U[

f-4 Rear (R)

FIGURE 3. Selected input imagery in (Zn } (left) and their digitized
reconstructions (right).

As described in Section 5 and references [6,71, optical weighted MSF synthesis was used
to determine the optimal BPF to use. This BPF was then applied to the input data set to
improve the correlation plane SNR 0 in (14). The correlation planes for all 49 image pair
correlations were then obtained and the locations of three largest correlation peaks in each
of the 21 upper off-diagonal Rf.f. correlation plane patterns were noted. A sequential
technique was used to investigae3the filter energy ch corresponding to each of the 2 • 3
(N - 1)! = (66)! = 4320 possible input shift cases.- The combination of shifted inputs with
the maximum filter energy Ch was then selected as our input data set (fn". The autocorrela-
tion matrix for this MCI input set if I is shown in Table 1. The G-S coefficient matrix
obtained from Table I using (I0? is shown in Table 2.

The SDF filter h that results from applying the procedure in (1l)-(13) is shown in Figure
4. In Figure 5, we show five cross-sectional scans taken at one pixel intervals through the
auto-correlation output for input image f3 and the cross-correlation output i " h of this
image and the MCI SDF filter h. From Figure 5, we see that the shape and width of the out-
put correlation is preserved quite well by our MCI SDF reference MSF filter.

. . . . i i i , . - ...... ..



2 3 4 5 6 7

1 4.5 6.2 4.6 -0.1 3,2 4.6 -3.

2 6.2 16.2 5.5 -0.4 4.0 6.4 -0.5

3 i4.6 S.5 36.7 3.1 8.8 5.6 1.5

4 -0.1 -0.4 3.1 11.7 0.2 0.2 3.2

5 3.2 4.0 8.8 0.2 31.2 4.9 1.5

6 4.6 6.4 5.6 0.2 4.9 18.8 -0.5

7 -3.4 -0.5 1.5 3.2 1.5 -0.5 7.6

Table 1. Auto-correlation natrix

Ilk 1 2 3 4 5 6 7

0i 0.262

0, -0.074 0.257 0

01 -0.059 -0.031 0.172

0, -0.033 0.018 -0.005 0.294

0, -0.072 -0.023 -0.005 0.008 0.187

06 -0.015 -0.054 -0.025 0.026 -0.026 0.246

07 -0.011 -0.014 0.001 -0.039 -0.007 0.007 0.367

Table 2. Gram-Schmidt coefficient matrix

INPUT T. AGE NUMBER 1 2 3 4 5 6 7

I (relative units) 7.89 7.60 7.15 7.51 7.82 7,91 7.29

Table 3. Peak in ensit es for the correlations of
inputs l to f7 with



FIGURE 4. The maximum common information (MCI) synthetic
discriminant function (SDF) filter R obtained
by the Gram-Schmidt (G-S) procedure.
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FIGURE S. Cross-sectional scans through the autocorrelation ?f
" (Figure a) and the cross-correlation ? "
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In Table 3, we list the peak correlation values I. obtained from the correlations of h in
Figure 4 with all seven input tank aspects i- 7 (see Figure 3). We find all seven I,
values to be equal within 5% as predicted from (7). The small differences observed ake due
to sampling and roundoff errors. In view of the fact that the one SOF can recognize all
different aspect views of the target, the variations in Table 3 are negligible. The desired
performance of our MCI SDF filter has thus been demonstrated. By inspection of Figure 4, we
see that the filter function h exhibits quite significant structure. We thus expected to
exhibit considerable discrimination [81 for inter-class pattern recognition as well as good
intra-class recognition of different aspect views of the same object (the case considered
herein).

SUMMARY AND CONCLUSIONS

In this paper, we have shown how to formulate the conventional matched spatial filter
correlator in terms of a new hyperspace representation. We have also included the case of
additive zero-mean noise in our analysis. This representation leads to a new synthetic dis-
criminant r,4...tion matched filter capable of recognizing a reference object independent of
the input image aspect view used. The use of bandpass filter preprocessing to enhance the
filter's performance on IR and multisensor imagery was noted and demonstrated. A new maxi-
mum common information filter concept was developed to enhance the correlation SNR0 by in-
creasing the filter's energy. Experimental verification on infrared M-60 tank imagery was
included to demonstrate the new thLeoretical concepts described. With one synthetic dis-
criminant function filter, we were able to successively correlate and recognize all aspect
views of the input object with essentially identical output peak intensity and SNR values.
The problem and application were selected so that off-line filter synthesis was realistic.
Methods to decrease the computational load and storage requirements of this off-line filter
synthesis process are the subject of current research.
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ABSTRACT

A hyperspace formulation of matched spatial filter pattern recognition together with band-
pass filter preprocessing leads to synthesis of a synthetic discriminant function that can
recognize a reference object independent of intensity and geometrical differences between
inputs. Use of a aximum common information preprocessing concept, Karhunen-Loeve tech-
niques, non-unitary transformations with multi-channel synthetic discriminant functions and
a new decorrelation transfirmation to provide inter-class discrimination for our synthetic
discriminant function syst i are considered. Experimental verification on M-60 tank targets
and an armored personnel ca tier false target are included.

1. INTRODUCTION

The recognition of the presence of a reference object in a cluttered background and the
location of its position are the classic problems in pattern recognition (1]. One of the
more attractive solutions to such problems is to correlate the on-line input image with a
stored reference pattern. The correlation operation can be realized both optically :2] and
digitally (31. Our present concern is the fact that in most practical pattern recognition
problems, the input image and the reference function will differ due to intensity variations
(this occurs when multisensor or infrared imagery is used) and moreso due to geometrical
differences that arise (especially when the aspect angle from which the object is viewed
cannot be controlled). Our specific pattern recognition case study concerns the recognition
and location of tank targets from IR imagery and the discrimination of these target objects
from false targets such as trucks and armored personnel carriers. In this application, both
geometrical and intensity differences exist between the input and reference data.

Because of the ease with which a correlation can be performed optically, we consider a
new hybrid optical/digital pattern recognition system. This processor uses bandpass filter
(BPF) preprocessing, an optical correlator and a synthetic discriminant function (SDF) as
the matched spatial filter (MSF) reference. The SDF S is synthesized off-line from a train-
ing set containing N different aspect views {fn) of the reference object. A hyperspace de-
scription of the data base, MSF and output correlation was used in [41 to develop an SDF
capable of recognizing a reference object independent of its aspect view. Because the per-
formance of a correlator rapidly degrades with even simple geometrical distortions between
the input and the reference object [5], use of an SDF and a hype:space description of a
pattern recognition problem is most useful. It also represents a new, attractive and prac-
tical approach to optical pattern recognition when severe geometrical distortions (such as
different aspect views of the object) must be handled.

In [6,7], a Gram-Schmidt (G-S) technique for SDF synthesis and the use of BPF preproces-
sing for the case of IR input imagery was described. In [4], we described our hyperspace
formulation of a MSF correlator and introduced a new maximum common information (MCI) filter
synthesis concept. In this paper, we consider advanced techniques to provide improved dis-
crimination performance of these SDFs fof inter-class pattern recognition applications. We
briefly review our hyperspace formulation (Section 2) and our SDF synthesis technique to-
gether with details of the G-S and Karhunen-Loeve (K-L) methods (Section 3). The MCI con-
cept together with its use in aligning common image structure is described in Section 4 with
emphasis on the improved discrimination performance this operation provides. Two multi-
channel SDF systems for inter-class discrimination are highlighted in Section 5. A new
general decorrelation transformation and its use in inter-class discrimination are described
in Section 6. These latter systems utilize non-unitary transformations to provide dimen-
sionality reduction of the area (volume) of the discriminant hypersurface. Experimental
verifications are included in Sections 4 and 6.

We distinguish three types of noise for which we desire increased discrimination. These
include: additive zero-mean noise (the use of a BPF and a MCI filter is quite useful for
this case [41); color background noise with non-zero-mean and with a deterministic nature;
and false targets. A K-L technique (Section 6) and a modified G-S technique using a decor-
relation transformation (Section 6) are found to provide quite excellent discrimination for
these latter two types of noise and false targets.



2. HYPERSPACE DESCRIPTION OF A MSF CORRELATOR

We consider N input images 'fn, each corresponding to a different aspect view of a ref-

erence object. We describe them by

M
f = Za t,(1n m=l anm m

where the Dm are basis functions in the set {(m} and the coefficients anm are the elements
of the target matrix FT. We desire to determine an SDF filter function h, which we write
as a siila e. xpansion in terms of the same basis function set as

M
h = : bm $M  (2)m=l m

such that the correlation Rfh of an fn and h equals a constant. We describe h and the fn as
M-dimensional vectors S and fn in an M-dimensional hyperspace whose axes are the basis
functions Dm and the coefficients of the vectors are their projections on the m axes, e.g.

= (al,a2 .... aM). (3)

We can write our correlation condition, f 0 h = constant, as

f -h = Za rnb m =ab =f h J'0=Rf 0 (4)n an m - ~ = Rfh(°) =

The condition f - h = R = constant in (4) describes a hyperplane (if h is fixed). S
cifically, the MSFn or SDF 9 P is a vector from the origin in hyperspace normal to the in F7
RD hyoerplane surface. If any input f satisfies (4), then we say that it is a member of the
set 'fn} of true targets. The energy of the function f is defined as

Ef = ff 2(x) dx = = f f = Rs . (5)mms

If = f f equals a constant Rs as in (5), then this describes a hypersphere or an equi-
energy surface in hyperspace. Hyperplanes and hyperspheres represent two quite useful and
easily described and realizable dot product functions of use in pattern recognition.

3. SYNTHETIC DISCnIMINANT FUNCTION (SDF) SYITHESIS

In this section, we highlight how the filter h in (2) that satisfies (4) for the input
set fn! in (1) can be derived [4,6,7]. We first formi the autocorrelation matrix

af f.(0) = f i * f (6)
1)

of all f input mage pairs. We then diagonalize R using G-S [41 or K-L [8,9] techniques.
This yieids the t. as

m= Zd fn' (7)

where the dmn are the elements of the G-S coefficient matrix. The tar et matrix ET and its
elements amn in (1) are found from the solution of (7.). We write (4 1 a

ETS - Rpa, (8)

where u is the unit vector. We compute the inverse target matrix FI and apply it to (8) to
obtain

h -FE'Ro, (9)

Substituting (7) into (9), we find h in terms of the original input set ;fn' of images.

Our G-S algorithm [4] to obtain the {t. from the {fn ! is described by

sI



;u2-17

1I = fl1x)/El

2 = [f2 (x) - Z2 (r2 1 )61 (x)]/E 2

(10)

m-i

f(x) - : Z(rm) O(x)]/Em

In (10), Zm is a function of the elements of the autocorrelation matrix ri4 (it describes
the weighting to be applied to the previously computed basis functions) and Em is an energy
normalizing constant.

A K-L matrix diagonalization technique [8,91 can also be used to determine the -m . In
this technique, an ensemble average matrix

R=E 'a a (1
= En nnm

is formed where the arn are the coefficients of the fno elements of {fn in any orthonormal
basis set m and where the ensemble average is formed over the image index n (i.e. over all
input imagery). A transformation T is applied to R to form the diagonal matrix

TIR T. (12)

This transformation produces new inputs fnKL = fn0j and new basis functions OmKL = Oml that
satisfy

-mKL 
=  m~mKL

'  (13)

i.e. ;mKL are the eigenvectors of R and the AM are the eigenvalues.

Use of a Fourier kernel basis function set is also possible as the Fourier transform can
easily be obtained optically and digitally. However, use of this basis set is quite restric-
tive. Its main function occurs in BPF processing. The G-S and K-L techniques are far more
orgainized and less ad hoc and less restrictive. They directly provide the best basis func-
tion set for the input training data given. In the G-S technique, the basis 01 is a function
only of fi, the basis 02 is a function only of f2 (with the part off 2 contained in f1 removed),
etc. This operation of decorrelation of the input data performed by the G-S expansion will
prove quite useful in our decorrelation transformations (Section 6) for improved SDF descrmi-
nation performance. The K-L technique is superior in terms of dimensionality reduction.
Each basis function in the K-L expansion is a function of all inputs in (fnl . Thus, we can
order the mKL in terms of decreasing eigenvalues Xm. By retaining only those basis func-
tions with the largest eigenvalues, a quite reduced dimensionality problem results. In prac-
tice, three eigenvectors are adequate to describe and represent over 95% of the data in 'Ifn.
In Section 6, we combine these features of K-L and G-S expansions into a new image discrimi-
nation technique.

4. DISCRIMINATION PERFORMANCE OF THE MCI SDF FILTER

In [41, we used an image data base consisting of seven inputs of an M-60 tank taken from
different aspects. We applied a BPF to the data (with the bandpass determined by optical
weighted MSF synthesis as in j6,7)). We then operated on this BPF data base to increase its
common information.

To see the reason for this, we recall from [4] that the SNR0 of the output correlation is
described by

SNR0 = 0.5>1/2 (14)

where h is the energy of the filter h and where the denominator is the variance of the input
noise (assumed to be zero-mean additive Gaussian noise). From (14), we note that increasing
Eh increases the SNR0 . In [4], we also noted that if the correlation Rf f between any two
elements of ffni is increased, so is the filter's energy. From Section i 7 2, we note that
a shifted or translated version of any input corresponds to a new input, a new hyperspace
vector and that a new h results for each such shifted input. From Section 3, we note that

jS
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if the input set fn 'is fixed, then the same h will result regardless of the basis set used.
Moreso, any one translated input can be used to recognize all translated versions of a given
target aspect (because of the shift-invariance of a Fourier transform correlator).

From these considerations, we proceeded to optimally shift all input image pairs to maxi-
mize their common information and hence their cross-correlation. The resultant MCI input
image set was obtained. Its aito-correlation matrix was produced. Its G-S coefficient
matrix computed from (10) and h calculated from (7) and (9). This S MCI SDF filter (Figure
1) was found to yield nearly equal output correlations (within 5%) with all aspects of the
reference M-60 tank object. By inspection of Figure 1, we see that this h has considerable
structure and that it is not a blurred average of all of the inputs. Thus, we expected to
provide good discrimination for inter-class pattern recognition (distinguishing true M-60
targets ft from false targets ff).

FIGURE 1. Synthetic discriminant function (SDF) produced by
the maximum common information (MCI) technique.

FIGURE 2. Synthetic discriminant function (SDF) produced
by colocating the centroids of the input image set.

To pursue this observation, we formed a second h filter from the same BPF image set by
colocating the centroids of the imagery (Figure 2). This represents a good initial estimate
of the proper shifts necessary for the input data. From an analysis of the autocorrelation
matrices for the MCI and the centroid colocated imagery, we found that the sum of the off-
diagonal elements was increased by over 20% for the MCI data set. The neak intensity of the
correlation outputs obtained showed about a 15% increase in the filter energy. We do not ex-
pect these two measures to be the same, but the increased filter energy and hence the in-
creased SNR0 obtained with the MCI filter is clearly apparent from this experiment.

qJ~j
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We expect the major benefit from the MCI filter to come from its enhanced discrimination.
To investigate this, we compare Figures 1 and 2. Although the centroid filter in Figure 2
appears to have more structure than the MCI filter in Figure 1, this is quite misleading,
since a much higher exposure was necessary to photograph Figure 2 than Figure I and since
much of the added "structure" present in Figure 2 is present because the image pairs were
not properly aligned. Thus, in Figure 2, the added structure is of low intensity, whereas
all intensities in Figure 1 are much higher than those in Figure 2. In addition, much more
lower intensity structure is actually present in Figure 1 (but it is not visible because of
the low dynamic range of the available display used to produce these figures).

IMAGE 1 2 3 4 5 6 7 IMAM 1 2 3 4 5 6 7

1 1.0 0.40 0.19 -0.00 0.15 0.27 -0.00 1 1.00 0.27 0.24 0.10 0.28 0.17 0.07

2 1.0 0.22 -0.02 0.17 0.36 -0.04 2 1.00 0.17 -0.02 0.16 0.26 0.06
Frontide- Frontide-

3 1.0 0.14 0 57 0.46 o.0rear/§ide 3 1.00 0.04 0.10 0.47 0.17rear~ide

4 1.0 0.01 0.01 0.33 front-rear 4 1.00 o.0o -0.01 rot/rear

5 1.0 0.20 0.09 5 1.00 0.20 0.05

" 6 1.0 -0.04 6 1.00 0.00

7 1.0 7 1.00

Table 1. Correlation coefficient ma- Table 2. Correlation coefficient
trx-fo r.tha.max =acommon matrix for the centroid
information (MCI) data set. data set.

To further pursue these image structure and high intensity features of the MCI filter, we
form the correlation coefficient matrices of both image sets (Tables 1 and 2). We denote the
elements of these matrices by r'. and note that they are the elements ri of the corresponding
autocorrelation matrix normalizad by the square root of the product of he energies of each
input image pair. These r!. are thus measures of the common structure present between dif-
ferent input image pairs. 13If the structures in images i and j are identical, then r:j - 1
(autocorrelation). As their structures differ, r!' decreases. In comparing Tables 1 and
2, we note that different image pairs exhibit a lar~er increase due to riCI than do others.
The F/S-R/S and the F-R image pair cross-correlations are boxed for comparison in Tables 1
and 2. These image pairs show large (2.9 to 5.0) improvement gain factors. This is ex-
pected because these image pairs have significant common structure (as an insoection of the
images will confirm).

Our major concern is that this structural alignment occurs automatically without the need
to use merely ad hoc techniques. Moreso, the structural alignment in an MCI filter is
weighted by the energies of each of the aligned image parts. To quantify the discrimination
ability of the MCI SDF filter, we use the reduced set of two tank images, f, (RS, right side)
and f; (R/S, rear/side) as shown in Figures 3a and 3b. The autocorrelation matrix, G-S co-

efficient matrix, target matrix and inverse target matrix for these data were then formed
(Figure 4). From this, the SDF

h' = + 0.46?2 (15)

was determined using Rm = 1. The correlation of this filter with the inouts f, and f5 gave
equal output correlatibn values of Rf = 30.3. We then correlated this same SDF filter with
a typical false target, an armored pbrsonnel carrier (APC) shown in Figure 3c. For this
cross-correlation, we found a much lower correlation peak intensity value of 5.4 (or 7dB
below the true target correlations). We thus conclude that the discrimination performance
of the MCI SDF filter is quite good as predicted.



3a 3b 3c

FIGURE 3. Photographs of two tank targets. (a) fl, RS
(right side), (b) fs, R/S (rear/side) and a
false target (c) ff (armored personnel carrier).

f f f, 01 02

f, 8.79 1.94 0 .33 0.00 f 12.96 0.00 0.33 0.00

f 5  1.94 18.9 02 0.05. 0.23 f, 0.21 4.31 0.01 0.23

4a 4b 4c 4d

FIGURE 4. Data matrices for the imagery in Figures 3a and
3b. (a) Auto-correlation matrix, (b) G-S coeffi-
cient matrix, (c) Target matrix iT' and (d) In-
verse target matrix F'

5. DISCRIMINATION USING MULTI-CHANNEL SDFs AND NON-UNITARY TRANSFORMATIONS

Conventional unitary transformations do not yield a different effective h filter func-
tion and hence no reduction in the volume of the discrininant surface will occur. Moreso,
only quite restricted discriminant surfaces (i.e. a hyperplane or a hypersphere) are possible
with one unitary transformation. In this section, we highlight our recent work on the use
of non-unitary transformations for multi-channel SDF processors to provide hyperspace dis-
criminant surfaces of more complex shape and with fewer points on them. This should yield
better discrimination performance for the SDF system. This technique is of considerable use
in the case of low energy false targets that lie within the neighborhood of the original
discriminant hyperplane described by (4). Elimination of such noise or false targets ff re-
quires a hyperspace discriminant surface of reduce area (or volume). Only non-unitary trans-
formations can achieve this (since the filter function S is effectively the same, but in a
rotated hyperspace, for the case of unitary transformations) and a multi-channel SDF system
is necessary.

Specifically, we envision an input tarqet set {Tt l with a SDF filter h. Applying a non-
unitary transformation T to {f } we obtain a new data set tfT } and a new R filter. If we
require 'ftl to satisfy-n and ffT} to satisfy fiT, then only a reduced class of inputs will
solve both filter functions. This occurs because the non-unitary transformations yield new
inputs not present in the original set of data. The resultant intersection of the discrimi-
nant hypersurfaces for both filters (one will be a hyperplane and the other of more complex
shape) will be a more complex surface with fewer vector points included. Thus, fewer input
images will satisfy this processor and improved discrimination will result. We have con-
sidered two such non-unitary transformations, the normalization of targets fT(x,T) - f(X)/Cf
and the square-law transformation fT(X) f 2 (x).
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unnormalized discriminant

sufc hyperplane
2r=0.2R

Effective Two-channel dis-
criminant surface (two

points nnly) 02
Unit Energy Sphere

ormalized discriminant surface

FIGURE 5. Multi-channel SDF processor
using a non-unitary normali-
zation transformation. The
common discriminant hyper-
surface is the points fl
and f2 "

FIGURE 6. Multi-channel SDF processor using
a non-unitary square-law transformation.
With R, = .R the common discriminant
hypersdrfac& is the double cross-hatched re-
gion shown.

In Figures 5 and 6, we show the intersection of these two multi-channel discriminant
surfaces. The second surface, produced by the non-unitary transformation is not a plane.
In the case of the normalized transformation (Figure 5), it is the unit equi-energy (norma-
lized intensity) sphere. In this case (with no noise), the discriminant surface is simply
two points corresponding to the two input target data set assumed. In the second case
(Figure 6), the square-law transformation corresponds to a hyperspace that is a parabola in
the original basis space. The resultant discriminant surface (using an R+0. 1R0 threshold
on the value of the output correlation) is shown by the double cross-hatched area in Figure
6. In both cases, the intersection volume of the discriminant surface is reducedand false
targets of low energy and those false targets lying close to the original discriminant
hyperplane will not be recognized in this new multi-channel system.

6. NON-UNITARY DECORRELATION TIANSF'ORMATION FOR IMPROVED DISCRIN11ATION

As noted in Sections 4 and 5, only non-unitary transformations can change the effective
hyperspace representation of a given data set. From our correlation plane SNR analysis and
our hyperspace description (Section 2) of the SDF correlator, we see that a reduced hyper-
space area or volume leads to a pattern recognition system with better discrimination. Thus,
in this section, we consider use of a new decorrelation transformation that can be applied
to a G-S or a K-L image basis set to remove selected basis functions and hence selected in-
puts. This operation thereby decreases the dimensionality of the hyperspace and thus im-
proves the discrimination performance of the processor by removing false target and noise
data. For our experiments, we chose a G-S basis set since the basis function Or. in this
representation is a function of the input fm alone. In a K-L basis set, each OKL is a func-
tion of all of the input images. Thus, a G-S representation is more conducive for direct
use of our proposed non-unitary transformation, since it directly removes selected basis
functions and hence selected inputs fe.g. false targets ff). A K-L basis set representation
is of utmost use in reducing the dimensionality of the data. Techniques to obtain separate
K-L basis functions corresponding to two different classes of inputs have been advanced [91
and are appropriate in advanced versions of our decorrelation transformation. Lack of a suf-
ficiently large statistical ensemble of true ft and false ff target data precluded use of
this K-L transformation in our present experiments.

Our proposed non-unitary decorrelation transformation concept is k'uite simple. We de-
scribe it for a simple case and then extend the concept to the more general problem. we



assume that the first basis function i corresponds to a false target ff (in the G-S tech-
nique, this is easily achieved by picking fl = ff) and that the remaining N - 1 basis func-
tions correspond to true targets ft (i.e., in the G-S technique, we select f2-fN to be mem-
bers of 'ft). We apply the non-unitary decorrelation transformation . to the target matrix
T to obtain a new target matrix F+ as below

F [[=] T (16)

aN2 N

From (16), we see that the decorrelation transformation u has yielded a new target matrix
with all information associated with the first basis funEtion $1 (and hence the false target
input f, = ff) removed. The new h' calculated from this F will thus not contair any of the
false target energy associated with i, = If. Its performance and discrimination will thus
be improved. We can directly extend this technique to larger {ff} data sets by letting the
first J input functions fl-- fj in {fnl in the G-S procedure correspond to {ff' and the last

- J elements correspond to (f 0. K-L techniques [9] can also be developed to produce sepa-
rate basis functions corresponding to different image classes. (In this case, a greatly re-
duced dimensionality is sufficient to represent the true and false target data sets).

ff fI f5 ff 1 f5 01 02 03 02 03
f f 2.68 0.54 0.91 0 1 0.61 0 0 f f 1.63 0 0 f 1  2.98 0 54.6 0

f 0.54 8.79 1.94 02 .06 0.33 0 f1  0.32:2.98 0

f5 0.91 1.94 18.9 03 -. 07-0.04 0.23 f5 05410.05 4.26 f5 0.05 4.26 -. 69 38.2

(7a) (7b) (7c) (7d) (7e)

FIGURE 7. Data matrices for the decorrelation transformation on the data of Figure
3. (a) Auto-correlation matrix, (b) G-S coefficient matrix, (c) Full
target matrix ET, (d) reduced target matrix F4, and (e) inverse of re-
duced target matrix F'-l.

To demonstrate the use of this technique, we return to the examples in Figures 3 and 4.
We use the APC (Figure 3c) as ff (our first function) and the two tank images (Figures 3a and
3b) as our second and third input functions. In Figure 7, we show the autocorrelation matrix
G-S coefficient matrix, full target matrix ET, reduced target matrix Fj, and the inverse F'-l
of the reduced target matrix for these inputs. The reduced target matrix E+ is obtained
applying

0 1 0(17)
001

to FT. It thus consists of the lower two rows and columns of ET . The new filter computed
from this E is

h + 0.42f 5 - 0.10ff* (18)

This new filter function was calculated, synthesized and correlated with the fl, f5 and ffinputs. When applied to the true target inputs (l and I5) an R = 30.0 value was obtained.

This represents only a negligible 1% loss from the R, = 30.3 valge obtained in Section 4.
For the cross-correlation of L' with the false target If, Rp - 0 wag obtained at t = 0. We
can widen the null in the If • L' correlation output by using more ff inputs (each being a
shifted version of the if false target used). For our case, five such inputs would suffice
to null all shifted versions of If.

7. SUMMARY AND CONCLUSIONS

In this paper, we have teviewed our hyperspace descriotion of a matched spatial filter
(MSF) correlator, the concept of the use of a synthetic discriminant function (SDF) as the
MSF reference and several techniques for generating the basis function sets necessary to
obtain the SDF. As before, bandpass filter preprocessing is used to remove the effects

czv



of intensity differences in the data (a problem that arises with IR and r,.tlsensor imagery).
A maximum common information (MCI) filter concept used to maintain intra-clzss recognition
of different aspect views of the reference object with one MCI SDF fi.ter w, s analyzed for
its ability to also perform inter-class discrimination between true and false targets. The
structure and intensity of the MCI SDF was found to be excellent and its ability to suppress
false target correlations was measured and seen to be good.

Non-unitary transformations to produce hypersurfaces with a reduced number of data points
and with more complex shapes were then described. A multi-channel SDF system was shown to
be quite useful. Two examples of such systems were discussed. A new decorrelation trans-
formation was then presented that allowed specific false targets (or colored background noise
of non-zero mean) to be eliminated from the data set. Experimental verification on IRimagery
of different aspect views of an M-60 tank and an armored personnel carrier false target were
obtained with excellent results.

The advanced discrimination techniques described and demonstrated in this paper make the
use of SDFs in optical or digital MSF correlators even more attractive and practic-al than
they initially were.
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